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Abstract

Modification of the basic random multiple-access model for the case of a centralized reservation-based data
network is considered. Substance of the modification is the following. The channel time is composed of equal
intervals, which are called frames. Each frame consists of some consequent mini-slots for the transmission of
requests, used for the channel reservation, and consequent slots for the actual packets transmission. Upper and
lower bounds of Tsybakov’s capacity are estimated for the system. Problem of the optimal choice for the numbers
of mini-slots and slots per frame is analyzed. It is shown that these values do not depend on the ratio between the
duration of request and packet transmission.1

I. INTRODUCTION

Recent successes in wireless communications lead to constantly increasing interest in random multiple-
access (RMA) theory nowadays. Since 70s RMA is widely known as an efficient method providing commu-
nication between large number of subscribers with bursty traffic sources in packet-switched data networks.
Idea of reservation in multiple-access systems is the old one as well. In [1] Rubin, inspired mostly by
the operation of satellite systems, considers centralized reservation-based multiple-access scheme. In the
model from [1] the synchronized subscribers perform reservations, by transferring short requests to central
repeater, and then transmit multiple-packets messages. Therefore, the shared broadcast channel is divided
into so-called frames. Each frame consists of consequent mini-slots for reservation and slots for actual
packet transmission. Access to the slots is regulated by time division technique, each mini-slot can be either
assigned to a single subscriber or be potentially used by all subscribers in contention manner. It is very
surprising, that some aspects of the operation of media-access control (MAC) sublayer of contemporary
IEEE 802.16 broadband wireless networks in point-to-multipoint mode [2] can be modeled by Rubin’s
model.

In [1] time-probabilistic characteristics are computed for different scenarios, particularly considering
large propagation delay values, and with the emphasis on reservations performed by means of time-division
multiple-access (TDMA). The most commonly used model for the RMA systems analysis was described
for instance in [3] by Tsybakov. Later its assumptions were expounded by Gallager in [4]. Throughout
the rest of the paper we will refer this model as basic. In contrast to Rubin’s model, where a finite
number of subscribers is assumed, the basic model assumes an infinite number of subscribers. Under this
assumption the TDMA system is principally incapable of providing finite mean packet delay, while many
RMA algorithms are capable of doing it.

Tsybakov and Berkovskii [5] consider the reservation problem in the framework of the basic model. In
contrast to [1], in [5] requests are not considered and the subscriber indicates how long it will require the
channel in regular packets. Packets from various subscribers compete with each other according to some
RMA algorithm. If a packet from some subscriber is received successfully, then all other subscribers in
the system stop their transmissions during the specified time interval, thus enabling the subscriber sending
the packet to transmit its information without conflict.

In this paper we introduce another reservation-based multiple-access model, which is a combination
of the models from [1] and [3]. On the one hand, we analyze the centralized network, where frames are
used for the packet transmission, under assumptions similar to those made by Rubin. On the other hand
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assuming infinite number of subscribers, we focus on the RMA algorithms and perform the estimation
of Tsybakov’s capacity for the considered system. Application of the results can be illustrated by means
of the IEEE 802.16 MAC analysis. The usage of infinite subscribers number model is motivated by the
fact, that the number of subscribers in IEEE 802.16 data network is expected to be fairly large. The rest
of the paper is organized as follows. In Section II basic RMA model is explained and some auxiliary
propositions are proved. Our centralized reservation-based model as well as the problem statement are
described in Sections III and IV, respectively. Upper and lower bounds for the capacity are constructed
in Section V. Some practical remarks are included in Section VI.

II. BASIC RANDOM MULTIPLE-ACCESS SYSTEM MODEL

Here we briefly explain basic RMA system model and review some necessary definitions from [3].
Packets transmission over the multiple-access channel is investigated. Infinite subscribers model, where
each subscriber can have at most one packet requiring transmission is considered. The subscribers are
assumed to transmit packets of a fixed length whose duration is taken as a time unit. The system is slotted,
so that subscribers can begin packet transmissions only at times t ∈ {0, 1, 2, . . .}. The time interval (t, t+1)
will be called a slot. The channel is noiseless and it is assumed that each subscriber knows by time t + 1
which of the three possible events idle slot, successful transmission, or conflict (two or more simultaneous
transmissions) did in fact occur in the slot (t, t + 1). The packet generation times of all subscribers form
the overall input traffic, which is assumed to be discrete Poisson. The probability that j new packets are
generated at some moment t equals to e−λλj/j!, where λ is the intensity of the overall input traffic.

An RMA algorithm for the basic system is defined as a rule that enables any subscriber with a ready-
for-transmission packet at any time t ∈ {0, 1, 2, . . .}, to determine whether or not it should transmit this
packet in the next slot (t, t+1). Thus we have a function of three arguments. The first argument is the time
x of packet generation. The second argument is the sequence θ(t) = (θ1, . . . , θt) of channel events θi, here
θi = 0 if (i−1, i) was an idle slot, θi = 1 if only one subscriber transmitted in this slot, and θi = 2 if two or
more subscribers transmitted in this slot. The third argument is the sequence ν(x, t) = (ν1(x), . . . , νt(x))
of events at the subscriber where a packet was generated at time x. Here νi(x) = 0 if this subscriber
has not transmitted a packet in the slot (i − 1, i), and νi(x) = 1 if it has. Therefore, formally an RMA
algorithm is defined as a function f0[x, θ(t), ν(x, t)] with values in the interval [0, 1]. Its value is the
probability that a packet generated at time x will be transmitted in the slot (t, t + 1).

The delay of a packet is the time interval from the moment of its generation till the moment of its
successful transmission. The delay δ(0)(λ, f0) is a random variable. Let a packet be generated at an arbitrary
but fixed time t at some subscriber, and let δ

(0)
t (λ, f0), be its delay. The mean delay (referred to as virtual

mean delay in [3]) is defined as D0(λ, f0) , limt→∞ Eδ
(0)
t (λ, f0).

The transmission rate (tenacity) of RMA algorithm f0 is the maximum (more precisely, the supre-
mum) intensity of the input traffic that can be transmitted by the algorithm with finite delay: R0(f0) ,
supλ{λ : D0(λ, f0) < ∞}.

Finally, the capacity of the basic RMA system is defined as C0 , supf0∈F0
R0(f0), where F0 is a set of

all RMA algorithms (note, that capacities can be defined over the class in the sense, that any other class
different from F0 can be used in the above definition). Exact value of the capacity C0 is still unknown.
As it was mentioned in [6] some researchers conjectured that the optimal value might be 0.5, but this
claim was quickly abandoned as baseless. The best known upper bound for the capacity C0 was found
by Likhanov and Tsybakov in [7] and is shown to be C0 = 0.587. The fastest known algorithm is a
part-and-try one, which rate is Rpt = 0.487, was found by Tsybakov and Mikhailov in [8]. Later it was
slightly improved, but the core of the algorithm remained the same.

Before moving to the central problem of the paper, we will prove several auxiliary propositions for
RMA systems having some form of feedback delay. Similar problem was addressed by Hajek in [9]. In
that paper the feedback information θi is assumed to be announced to all the subscribers by time i + N ,
where N is the feedback delay. In the basic model the event in the slot i is known by the beginning of
slot i+1, meaning that N = 1. In this section we assume, that all slots are grouped into equal consequent
segments of length K. The values of function f0 do not depend on the values of θi related to the current
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segment. For given K value any RMA algorithm and the set of all the RMA algorithms justifying this
rule are denoted as f

(K)
0 and F (K)

0 respectively. Note, that F (1)
0 , F0

Proposition 1: C
(K)
0 = sup

f
(K)
0 ∈F(K)

0
R0(f0) ≤ C0.

Proof: From the definition of class F (K)
0 , it follows directly, that for any K: F (K)

0 ⊂ F0 and thus
proposition holds.

Proposition 2: For any algorithm f0 ∈ F0, having transmission rate R0, and any value of K an algorithm
f (K) ∈ F (K)

0 exists, which also has the transmission rate R0.
Proof: Let us show how to construct the desired algorithm. Any algorithm f0 ∈ F0 can be modified

in the following way to be in the set F (K)
0 . At the moment of a packet generation a subscriber chooses a

number m uniformly from {1, 2, . . . , K} once and then ”applies” algorithm f0 only to slots having number
m in any segment of K slots. This means, that each subscriber uses feedback from one fixed slot (which
has number m in each segment) and can transmit only in such slots. Thus, we ”split” our system into K
independent basic systems, where each subscriber randomly chooses one system for his operation once
and then works independently of those who have chosen different ones according to algorithm having
transmission rate R0/K. Thus, overall transmission rate achieved is R0.

Note, that this approach does not necessarily guarantee, that the mean delay of the constructed algorithm
will be ”good”. Moreover, it’s easy to give examples when this ”splitting” approach leads to unwarrantably
high delay values [9].

Proposition 3: For any given K the capacity C
(K)
0 achieved over the class F (K)

0 equals to the capacity
of the basic system C0 (achieved over the class F0).

Proof: On the one hand from proposition 1 it follows, that C
(K)
0 ≤ C0. On the other hand, from

proposition 2 it follows, that any algorithm from F0 for any K can be modified in the way that it can be
in F (K)

0 , without reducing its transmission rate. Thus, C
(K)
0 = C0.

III. CENTRALIZED RESERVATION-BASED SYSTEM MODEL

Let us consider a data transmission system with one central station and infinite number of subscribers.
Central station is connected to all the subscribers by means of two communication channels, namely
uplink and downlink. Uplink channel is used for the data transmission from all subscribers to the central
station and the downlink channel is used for the information transmission from the base station to the
subscribers.

The traffic model used is exactly the same as in the basic model - the moments of packets arrivals
represent a Poisson process, which provides an arrival rate equal to λ packets per unit of time. However,
each subscriber, having a new packet, transmits a special request message to the central station in order
to reserve uplink channel time. The duration of the request transmission is supposed to be α < 1 units of
time. In all the consequent consideration we assume, that durations of request and packet transmissions
are fixed and uplink channel usage is organized in the following way. The time axis is slotted into equal
intervals of time, which are called frames. All frames have fixed structure. Each frames comprises K ≥ 1
intervals of time having duration α, which are called mini-slots, and L ≥ 1 intervals of time having
duration of the unit of time, which are called slots. Slots are used by the subscribers for the transmission
of packets, while mini-slots are used for request transmission.

The system is synchronized. Central station and all subscribers know the beginning of each i-th frame
i(αK + L), each j-th slot j + αKb(j + 1)/Lc and each k-th mini-slot kα + Lbk/Kc, where i, j, k ∈
{0, 1, 2, . . .} and transparent numeration of slots and mini-slots is assumed.

Since simultaneous transmissions of subscribers are possible in the mini-slots, three different situations
can be distinguished in an arbitrary mini-slot l ∈ {1, 2, . . . , K} of frame number (i − 1) (we denote
them by θ

(l)
i ): successful transmission of some subscriber (θ(l)

i = 1), empty mini-slot meaning that there
is not any transmission (θ(l)

i = 0), and collision, when two or more subscribers transmit in the mini-slot
(θ(l)

i = 2). By the beginning of each i-th frame the central station in the downlink transmits information
about the situation in all the mini-slots of the frame i − 1 to all the subscribers. This information is
represented by the feedback vector θ̄i = (θ

(1)
i , θ

(2)
i , . . . , θ

(K)
i ).
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Subscribers transmit requests by means of some centralized reservation-based system RMA algorithm
f (K), which is a rule, that bases on the situations in mini-slots of previous frames, and is used by
the subscribers at the beginning of each frame to determine whether to transmit a request in a mini-
slot of this frame or not. Analogously to the basic model f (K) is defined as a function of three ar-
guments f (K)[x, θ(n), ν(x, n)], n ∈ {0, 1, 2, . . .}. Here, x is the moment of time, when the packet is
generated and θ(n) = (θ̄1, θ̄2, . . . , θ̄n) is a sequence of feedback vectors till the beginning of frame
n. Finally, ν(x, n) = (ν̄1(x), ν̄2(x), . . . , ν̄n(x)) is a sequence of vectors for the subscriber x, ν̄i(x) =

(ν
(1)
i (x), ν

(2)
i (x), . . . , ν

(K)
i (x)). We denote ν

(l)
i (x) = 0 if the subscriber whose packet has been generated

at time x did not transmit a request in the l-th mini-slot of the i-th frame and ν
(l)
i (x) = 1 otherwise. The

possible values of the function f are set of vectors: p̄ = (p(1), p(2), . . . , p(K)), where each element p(l)

represents the probability of the subscriber’s transmission in the l-th mini-slot of the n-th frame.
We suppose, there is an infinite queue buffer for the requests at the central station. When some request

is transmitted successfully, it arrives to the tail of this queue. The central station serves the requests from
the conducted queue according to some rule, which is referred to as service discipline g(L). The serving
is done by means of a downlink transfer information at the beginning of each frame, describing which
subscribers are allowed to transmit their packets in each of the L slots of the next frame. We suppose, that
the central station uses the number of mini-slots, where some request has been successfully transmitted
to inform the corresponding subscriber about the assignment of slots to him. That is why, throughout this
paper we assume that a subscriber can not make more than one request transmission attempt per frame.
This leads to the following restriction for considered algorithms. For any f (K): the weight of vector ν̄i(x)
is either one or zero for any subscriber x and frame i.

Noiseless uplink and downlink channels are assumed. Neither packets nor requests can be distorted by
noise. Situations in mini-slots are always correctly distinguished by the central station. Feedback vectors
and slots allocation information is always successfully transmitted in the downlink to all subscribers.

IV. DEFINITIONS AND PROBLEM STATEMENT

We call the pair (f (K), g(L)) the multiple access protocol for centralized reservation-based system
with parameters (K, L). Here, we introduce definitions analogous to those given previously for the
basic RMA model, with extensions corresponding to our system. The time interval from the moment
when a packet was generated to the moment it has been successfully transmitted is referred to as
packet delay transmission. Then in some arbitrary but fixed frame (having number n) let an additional
packet arrive in the system, whose transmission delay is denoted by δn(λ,K,L, f (K), g(L)). According
to the algorithm of the system operation the transmission delay consists of two components. The first
one is the request delay for random access δ

(1)
n (λ,K, L, f (K)). It is the time from the moment of

packet generation, to the moment of the corresponding request successful transmission. The second
one is the time from the moment of request successful transmission, to the corresponding packet will
be successfully transmitted δ

(2)
n (λ,K,L, g(L)). We will refer to this value as queuing delay. The value

D(λ,K, L, f (K), g(L)) , limn→∞ Eδn = limn→∞ E(δ
(1)
n + δ

(2)
n ) for a given arrival rate λ, K mini-slots, L

slots and multiple access protocol (f (K), g(L)) will be referred to as the mean delay of packet transmission.
Further we will need notation for mean request delay for the random access D1 , limn→∞ Eδ

(1)
n .

The maximal arrival rate value (more precisely the supremum of the arrival rate), which can be
transmitted by means of some multiple access protocol (f (K), g(L)) for some frame structure (K, L),
with finite mean delay R(K,L, f (K), g(L)) , supλ{λ : D(λ,K,L, f (K), g(L)) < ∞} will be referred to as
transmission rate (tenacity) of the multiple access protocol.

Then if the multiple access protocol is not fixed, the system capacity is the following value

C(K, L,F (K),G(L)) , sup
f (K)∈F(K)

g(L)∈G(L)

R(K,L, f (K), g(L)),

where F (K) is set of all RMA algorithms defined for the system with K mini-slots and G(L) is set of all
service disciplines, which can be defined for the system with L slots.

Our aim is to compute the upper and lower bounds for the capacity C(K,L,F (K),G(L)).
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V. CAPACITY ESTIMATION

Let us first consider only the part of the whole system operation, namely request transmission during
reservation. Packet transmission is not considered. This system is referred to as a reduced one. Then,
transmission rate R1 and capacity C1 definitions analogous to those previously mentioned can be in-
troduced for the reduced system, namely R1(K,L, f) , supλ{λ : D1(λ) < ∞} and C1(K, L,F (K)) ,
supf∈F(K) R1(K,L, f). Then following propositions are proved.

Proposition 4: If there is exactly one mini-slot in each frame then the capacity of the reduced system
equals to C0/(α + L), where C0 is the capacity of the basic RMA system (C1(1, L,F (1)) = C0/(α + L)).

Proof: It is easy to notice, that for K = 1, when each frame consists of only one mini-slot we have
exactly the basic RMA system, for which vectors θ̄i, ν̄i(x) and the output of function f turn to scalars.
Thus, F (1) = F0. The only difference is that one ”slot”, which is used in basic system corresponds to one
frame of length (α + L) in our reduced system, what is taken into account by means of corresponding
normalization.

Proposition 5: If there are more than one mini-slot in each frame then the capacity of the reduced
system equals to (C0K)/(αK + L), where C0 is the capacity of the basic RMA system (C1(K, L,F (K)) =
C0K/(αK + L), K ≥ 2).

Proof: It is easy to notice, that F (K)
0 = F (K). Thus, for K ≥ 2 we have exactly the basic RMA

system with slots grouped into segments of length K (as it is explained in section II), whose capacity is
proved to be C0 (proposition 3). The only difference is that one ”slot”, which is used in the basic system
corresponds to one frame of length (αK +L) in our reduced system, what is taken into account by means
of corresponding normalization.

Now we are finishing with the analysis of the reduced system and consider the overall reservation
model. Below are two necessary conditions for the system stability.

Proposition 6: The mean request delay for the random access D1 and the mean delay of packet
transmission D may be finite if the inequality

λ(αK + L) < C0K (1)

holds.
Proof: From proposition 5 it directly follows that the request delay for the random access D1 is

infinite if the arrival rate does not satisfy λ < C0K/(αK + L). Obviously, the same is valid for the mean
delay D.

Proposition 7: Let, the arrival rate value λ is chosen such as the request delay for the random access
D1 is finite, then mean delay of packet transmission in the system D may be finite if inequality

λ(αK + L) < L (2)

holds.
Proof: Generation and transmission of packets can be described in terms of queueing theory ([10]).

We have Poisson packet arrivals with rate λ(αK+L) per frame. On the other hand not more than L packets
can be transmitted per frame using any service discipline g(L). Thus this queuing system is unstable if
(2) does not hold.

Now we will construct the upper bound for the system capacity C.
Proposition 8: For given α value, the following inequality

max
K,L

C(K, L,F (K),G(L)) ≤ 1

1 + α/C0

, (3)

holds for the capacity of centralized reservation-based RMA systems.
Proof: Since from proposition 6 mean delay of packet transmission may be finite if λ(αK + L) <

C0K, we easily obtain that it may be finite if arrival rate λ satisfies

λ <
C0

K
L

αK
L

+ 1
. (4)
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On the other hand from proposition 7 mean delay of packet transmission may be finite if λ(αK +L) < L,
hence it may be finite if λ satisfies

λ <
1

αK
L

+ 1
. (5)

From (4) and (5) we obtain, that

λ < min (
C0

K
L

αK
L

+ 1
,

1

αK
L

+ 1
),

what leads to maxK/L C(K,L,F (K),G(L)) = 1
α/C0+1

for K/L = 1/C0 and proves (3).
Finally, let us construct a lower bound for the system capacity C. For this purpose we consider the part-

and-try RMA algorithm, which, as previously mentioned, is the fastest known one for the basic model.
From proposition 2 follows, that algorithm exists in class F (K), which has exactly the same transmission
rate. Moreover, an explicit way to construct it is provided in the proof of proposition 2. Let us denote
this RMA algorithm as φ(K). Then the following proposition can be proven.

Proposition 9: Let in the centralized reservation-based RMA system φ(K) RMA algorithm and first-
input-first-output (FIFO) service discipline (denoted as ϕ(L)) be used. Then maximal transmission rate of
multiple-access protocol (φ(K), ϕ(L)) for all K and L can be made arbitrary close to Rpt

α+Rpt
, where Rpt is

the transmission rate of the part-and-try-algorithm.
Proof: One can show, that necessary and sufficient condition, that request mean delay for random

access is finite, is

λ(αK + L) < RptK. (6)

Let λ justifies condition (6). Then central station queue becomes G/D/L FIFO queuing system, which
input traffic represents the outcome of K basic RMA systems, where subscribers independently operate
according to part-and-try algorithm. One can show, that for this queuing system Baccelli-Foss conditions
[10] are satisfied. Therefore, condition

λ(αK + L) < L. (7)

is the necessary and sufficient condition, that mean packet delay in the queue is finite.
From conditions (6) and (7) and using approach analogous to one used in the proof of proposition 8

we obtain, that mean packet delay is finite if and only if both λ <
Rpt

K
L

α K
L

+1
and λ < 1

α K
L

+1
and taking into

account the fact, that for any ε > 0 a pair (K, L) exists for which |K/L− 1/Rpt| < ε, the proposition is
proven.

From the proof of this proposition the corollary directly follows: the maximal transmission rate of
multiple-access protocol (φ(K), ϕ(L)) is achieved, when K

L
≈ 1

Rpt
.

VI. SOME PRACTICAL REMARKS

We have introduced upper and lower bounds for Tsybakov’s capacity of centralized reservation-based
RMA system. In contemporary IEEE 802.16 broadband wireless network a version of so-called binary
exponential back-off RMA algorithm is used for lower priority traffic requests [2]. This algorithm is
shown to have zero transmission rate for infinite-users basic RMA model in [11]. For finite, but fairly
large number of users, value ln (2)/2 can represent some analog of transmission rate [12].

Computation of mean packet delay in the centralized reservation-based RMA system for the general
case is an open question and is out of the scope of this paper. Nevertheless, an interesting application of
the results is observed, if we apply our analysis for the case when some practical system is investigated,
where ”rational” algorithm f (K) having transmission rate R0, which is independent of K, and some
”simple” service discipline g(L) (like FIFO), are implemented. Thus, transmission rate of this multiple-
access protocol is R = min( R0K

αK+L
, L

αK+L
). For such system we would like to set up the following

hypothesis: the ratio K/L, which minimizes the mean packet delay value D(λ,K,L, f (K), g(L)), is a non-
decreasing function of arrival rate λ and for any α, values of this function lie in a narrow interval not
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wider than [1, 1/R0]. Moreover, mean delay itself is minimized, when K and L are minimal among those
satisfying optimal ratio K/L. Thus, taking into account our hypothesis, frame structure can be optimally
designed and is almost independent of the ratio between the duration of request and packet transmission.
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