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Abstract—We consider a decentralized multiple access system with a binary “success-failure”
feedback. We introduce a family of algorithms (protocols) called “algorithms with delayed
intervals” and study stability conditions of one of them. Then we discuss some numerical
results and a number of related and interesting problems and hypotheses.
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1. INTRODUCTION

In the late 1970s, Tsybakov and Mikhailov [1] and Capetanakis [2] considered a model with
infinite number of users and a single transmission channel which is available to all users and
transmits messages between them. The authors proposed an algorithm that allows to transmit
messages with a finite mean delay given that the input intensity is below a certain threshold.
The algorithm is based on the use of the so-called ternary feedback. This means that the users
can observe the channel output and distinguish three possible situations, either no transmissions
(“Empty”), or transmission from a single user (“Success”), or a collision of messages from two
or more users (“Conflict”). Soon afterwards, following [1, 2], algorithms with binary feedback,
“Empty–Nonempty” and “Conflict–Nonconflict”, were introduced and studied.

Performance of the model with “Success–Nonsuccess” (S–NS) feedback is less definite. Here a
user cannot distinguish collisions and empty slots. Several algorithms that were proposed in [3–5]
could guarantee a stable behaviour of the system only given that certain model extensions are made,
like introducing a special testing file, etc. In [6] the authors proposed an idea of a new algorithm
that may provide stable performance of the system with S–NS feedback and without a model
extension, but they did not give a precise description. Then a description of one such algorithm
was given in [7], where the authors presented balance equations for the stationary distribution of a
corresponding Markov chain and numerically found the capacity of this algorithm, i.e., a number λ0

such that the balance equations have a solution if and only if the input rate λ is smaller than λ0.
We are unaware of any further studies on algorithms for systems with the “S–NS” feedback.

Modern communication systems deal with a variety of multiple access algorithms including ran-
dom multiple access; see, for example, systems based on standards IEEE 802.11 and IEEE 802.16.
Moreover, one may say that these standards deal with the “S–NS” feedback. In particular, in stan-
dard IEEE 802.16, the base station does not distinguish collisions from empty slots. It is known
that the algorithms used in practice do not provide stable dynamics if the number of users is infinite
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(see, e.g., [8]). This problem is not of great importance for existing networks with a relatively small
number of users, but an increase in this number may lead to essential delays. Therefore, designing
algorithms that stabilize systems with “S–NS” feedback may have not only theoretical but also
practical importance.

In this paper we introduce a rather general class of algorithms with binary “S–NS” feedback,
which includes an algorithm from [7]. Then we analyze the simplest algorithm from this class,
which is similar to that from [7] (see Theorems 1 and 2). Similar analysis is applicable to other
algorithms, and the chosen one has the only advantage that it has the minimal possible number of
free parameters. This allows us to supplement its study with a tractable figure (see Section 5.1).

The paper is organized as follows. In Section 2 we introduce a multiple access model and
describe an algorithm chosen for the analysis. Then we provide a general description of the class
of algorithms for “S–NS” feedback. The common feature of these algorithms is that they “browse”
(messages that arrive within) some time intervals, then remove “successful” intervals and move
“unsuccessful” ones to a queue, and then take them when a new “successful” interval appears.
Following [7], this class is called a class of algorithms with delayed intervals. In Section 3 we
study the chosen algorithm and show how one can determine the stability region and optimize
parameters of the algorithm. The stability problem is here reduced to the study of conditions for
positive recurrence and ergodicity of a certain two-dimensional Markov chain. In Section 3 we
formulate several results for this Markov chain; their proofs are given in Section 4. In Section 5, we
provide a comparative analysis of the chosen algorithm and of other algorithms that were introduced
in Section 2; we also discuss a number of open problems. Finally, the Appendix contains a number
of known auxiliary results.

2. MODEL AND MULTIPLE ACCESS ALGORITHM

2.1. Model

Here we describe and study a variant of the multiple access model introduced in [9]. There is an
infinite number of users and a single transmission channel which is used by the users for message
exchange. It is assumed that all messages have the same length and that it takes a unit of time to
transmit a message. The message arrival process to the system forms a time-homogeneous Poisson
flow with rate λ (thus, interarrival times form an i.i.d. sequence having a common exponential
distribution with rate λ and mean 1/λ).

We introduce a number of assumptions on the functioning and accessibility of the transmission
channel, which almost coincide with assumptions from [9], and the only difference is in Assumption 3
(see below).

Assumption 1. Transmission time is slotted. All slots have the same length with the trans-
mission time of a message. Time slots are numbered by positive integers, and slot t corresponds to
time interval [t, t+1) (for short, we say slot t instead of slot number t). Beginnings and ends of all
time slots are known to all users. Message transmission may start only at the beginning of a time
slot.

Assumption 2. Within any time slot, only one of the following three events may occur:

• Single transmission (event S, success);
• No transmission (event E, empty);
• Two or more transmissions (event C, conflict, collision).

Assumption 3. At the end of each time slot, each user can observe whether the slot was
successful or not. If the latter, then “passive” users (those who did not transmit their messages
within this time slot) only know that there was no success but cannot distinguish what has occurred,
E or C. (This is the difference with the model from [9], where such a possibility was given.)
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Denote by θi the indicator of the event {transmission in slot i is successful}, i.e., a random
variable taking value 1 if the event occurs, and 0 otherwise. We say that a sequence θ(t) =
{θ1, . . . , θt} is the channel history by time t. We assume that, at time t, this history is available to
all users.

Assumption 4. A user can hold only one message. For short, we will say message x instead
of message arriving at time x. Let tx denote the integer part of a number x, i.e., an integer such
that tx ≤ x < tx + 1.

A user that holds a message x may use the value x to make a decision in which slots he will

transmit it in the future, starting from slot tx + 1. Denote by ν
(x)
i the indicator of the event

{message x was transmitted in slot i}. A sequence ν(x)(t) = {ν(x)0 , . . . , ν
(x)
t } is the history of

message x by time t. If message x is transmitted in slot t, ν
(x)
t = 1, and if this is the only such

message, θt = 1, then x is transmitted successfully and is removed from the system after that.

2.2. Multiple Access Algorithm

Following [9], a multiple access algorithm is a rule under which, at the beginning of each time
slot t, a decision on message x (either to transmit it or not) is made. It is based on the common
channel history θ(t− 1) and on the individual message history ν(x)(t− 1). Such a decision may be
either deterministic or random.

In this paper, we consider algorithms with the following two-phase decision rule:

1. For each t, at the beginning of slot t, all users observe the channel history θ(t− 1) and choose
somehow a common set B(t) and a number pt ∈ [0, 1];

2. Then the users take individual decisions (to transmit in slot t or not) as follows: if x ∈ B(t),
then message x is transmitted with probability pt; otherwise, message x is not transmitted (with
probability 1).

We will use the following terminology. The time when message x arrives is associated with point
x on the time axis, and this point is removed after successful transmission of the message. If, at
the beginning of time slot t, a set B(t) = B and a number pt = p are chosen, then we say that B
is browsed with probability p in slot t. If p = 1, then we say for short that the set is browsed, for
short, and if p < 1, we say that it is browsed with probability p. If B is browsed, then it becomes
completely browsed if θ(t) = 1 and partially browsed otherwise (if θ(t) = 0). Clearly, a union of
completely browsed sets is completely browsed. This means that if a set B is browsed in slot t,
then all messages from this set have been successfully transmitted and left the system by time t+1.

We describe operation of the algorithm following this terminology. The algorithm proceeds
in sessions. The time axis is divided into time intervals of length A + B, where A and B are
parameters of the algorithm. Session number 0 ends at time 0. Session k starts with browsing a
new interval [(k−1)(A+B), k(A+B)), or, more precisely, browsing messages that arrive within this
time interval. For k ≥ 1, let sk be the start, and ek the end time of session k. After completion of
session, say, k−1, the next session k starts immediately (sk = ek−1) if ek−1 ≥ k(A+B). Otherwise,
the transmission channel stays empty during �(k(A + B) − ek−1)� time slots, and then session k
starts; i.e., sk = ek−1 + �(k(A + B) − ek−1)�. Here �x� is the smallest integer that is not smaller
than x.

Each session k (k ≥ 1) includes the following steps.

Step 1. In slot sk +1, interval [(k− 1)(A+B), k(A+B)) is browsed. The interval contains two
disjoint subintervals [(k − 1)A + B, kA + (k − 1)B) and [kA + (k − 1)B, k(A + B)), of lengths A
and B. For short, we may speak about intervals A+B, A, and B.

If there is a success, θ(sk + 1) = 1, then interval A + B becomes completely browsed (and is
removed from consideration), and the session ends. Otherwise, the algorithm proceeds to Step 2.
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Step 2. In slot sk + 2, interval A is browsed. If θ(sk + 2) = 0 (nonsuccess), then interval A+B
joins a queue of delayed intervals, and the session ends. Otherwise interval A becomes completely
browsed. This means that interval B contains at least one message. Then there are three options.

Step 3.1. If the queue of delayed intervals is empty, then the algorithm applies a procedure
of browsing a nonempty set (which is described below) to interval B. When the procedure ends,
interval B becomes completely browsed (and is removed), and the session ends too.

Step 3.2. If the queue contains only one interval (say D), then the algorithm applies the proce-
dure of browsing a nonempty set to the union of two intervals, B and D (which is also nonempty).
When the procedure ends, both B and D become completely browsed (and then are removed), and
the session ends too.

Step 3.3. If the queue contains two intervals or more, then the algorithm applies the procedure
of browsing a nonempty set to the union of B and two first intervals from the queue. When the
procedure ends, all three intervals become completely browsed and are then removed, and the
session ends.

Now we describe the procedure of browsing a nonempty set.

Let V be a finite nonempty set. We start the procedure by letting V = V0.

Action 1. The set V0 is browsed with probability 1. If there is a success, then V0 becomes
completely browsed, and the procedure ends. Otherwise, we proceed to Action 2.

Action 2. The set V0 is browsed with probability α ∈ (0, 1). If there is no success, then the set is
browsed again and again, until the first success. Then the “successful” element (say x) is removed.
We let V0 := V0 \ {x} and return to Action 1.

Here α is a parameter of the procedure.

The algorithm that we have described depends on five parameters:

• Lengths of intervals A and B;
• Parameters α0, α1 and α2 that are used in the procedure of browsing a nonempty set within
Steps 3.1, 3.2, and 3.3, respectively (here an index of α shows how many intervals are taken
from the queue).

Below we study this algorithm and, in particular, the following problems:

– Given values of the five parameters, do there exist values of λ that guarantee stable operation
of the algorithm? If so, what are they?

– What is the maximum value of intensity λ (the capacity) which guarantees the stability?

2.3. Class of Algorithms with Delayed Intervals

The algorithm introduced in Section 2.2 may be called an algorithm with delayed intervals.
Below we give a description of a class of such algorithms.

An algorithm proceeds in sessions. First, we choose an integer N ≥ 2, and then, N positive
numbers D1,D2, . . . ,DN . A session contains a number of consecutive steps.

Step 1 of session k starts in slot sk + 1 with browsing a new interval of length
N∑

i=1
Di, which

contains N disjoint intervals of lengths D1,D2, . . . ,DN , respectively. If θ(sk) = 1, then the session
ends; otherwise, the algorithm proceeds to Step 2.

Step j (where j < N) proceeds in slot sk+j with browsing an interval of length
N−j+1∑

i=1
Di, which

is a union of the first N − j + 1 intervals D1, . . . ,DN−j+1. If θ(sk + j) = 0, then we proceed to

Step j + 1. Otherwise, the interval
N−j+1∑

i=1
Di becomes completely browsed. This also means that

the interval
N∑

i=n−j+2
Di contains at least one message. Then one applies the procedure of browsing
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a nonempty set to the union of the latter interval and some number of delayed intervals (if there
are any). The number of delayed intervals that may be taken from the queue is another parameter
of the algorithm.

Step N is analogous to Step j < N , with the only difference that if θ(sk + N) = 0, then the

whole interval
N∑

i=1
Di joins the queue of delayed intervals.

For the algorithm from Section 2.2, we have

(a) N = 2, D1 = A, and D2 = B;
(b) If there are q delayed intervals in the queue, then the first min(2, q) of them are taken at Step 3.

This algorithm is the simplest stable algorithm in the introduced class: at the end of Section 3.3,
we show that there is no stable algorithms with N = 2 if one cannot take more than one delayed
interval from the queue.

For the algorithm introduced in [7], we have

(a) N = 3;
(b) The number of delayed intervals taken from the queue of length q equals min(q, 1).

3. ASYMPTOTIC ANALYSIS OF THE MAIN ALGORITHM:
CONDITIONS FOR POSITIVE RECURRENCE AND ERGODICITY

3.1. Time Scaling

We scale the time axis by λ, so the length of a time slot becomes equal to λ. Then the input
flow of messages becomes Poisson with parameter 1. An advantage of this scaling is that the new
lengths of intervals a = Aλ and b = Bλ become free variables which are not related to λ.

Denote L = a+ b. Introduce two new characteristics of the system: at each time t, they are

• The length W (t) of a part of the input interval that has not been browsed yet;
• The number of delayed (and partly browsed) intervals Q(t).

In the new time scale, we will use the same notation, sk and ek, as above for the start and end
times of sessions.

Recall that, for k = 1, 2, . . . , session k starts immediately after the end of session (k − 1)
(i.e., sk = ek−1) if W (ek−1) ≥ L. Otherwise, there is a delay of i time units, where i is the
smallest integer such that W (ek−1) + iλ ≥ L. In other words, i = �(L − W (ek−1))/λ�, and then
sk = ek−1 + iλ and W (sk) = W (ek−1) + iλ.

Let Tk be the duration of session k, k = 1, 2, . . . . During the session, the length of a nonbrowsed
interval increases by λTk, i.e.,

W (ek) = W (sk)− L+ λTk,

and at the end of the session there can be three scenarios:

• either the browsed interval is removed and the number of delayed intervals is unchanged,

Q(ek) = Q(ek−1);

• or the browsed interval is removed together with the only interval in the queue,

Q(ek) = Q(ek−1)− 1,

or with two intervals from the queue,

Q(ek) = Q(ek−1)− 2;
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• or the interval is browsed only partially and joins the queue,

Q(ek) = Q(ek−1) + 1.

We first consider a subsequence of two-dimensional vectors at embedded epochs of session ends

(Wk, Qk) := (W (ek), Q(ek)). (1)

By the model construction and since the input is a Poisson process, sequence (1) forms a time-
homogeneous Markov chain. We study conditions for its recurrence/transience in terms of parame-
ters λ, a, and b and additional parameters α0, α1, and α2. Note that the sequence (W (λn), Q(λn))
is not Markov in general. We will show that transience of the embedded chain implies a similar
property of the sequence (W (λn), Q(λn)), and that recurrence of the embedded chain implies that,
under an extra technical condition, the sequence (W (λn), Q(λn)) becomes regenerative and aperi-
odic. This, in turn, will imply existence of a stationary version of this sequence and convergence
to that in the total variation norm.

3.2. Probabilities of Events in a Session

Recall that, for each session, there are three possibilities:

• Session ends at Step 1, and the number of delayed intervals does not change;
• Session ends at Step 2, and the queue increases by one;
• Session ends at Step 3, and if the queue was q ≥ 1, it decreases by min(2, q).

Let p0, p1, and p− be the respective probabilities of these events, and Xa and Xb be the numbers
of points of Poisson process in disjoint time intervals of lengths a and b.

In Step 1, an interval of length a+ b is browsed, and it becomes completely browsed if

Xa +Xb = 1.

The probability of this event is

p0 = P(Xa +Xb = 1) = (a+ b)e−a−b.

Further, we have
p− = P(Xa +Xb �= 1, Xa = 1)

= P(Xa = 1, Xb ≥ 1)

= P(Xa = 1)P(Xb ≥ 1)

= ae−a(1− e−b)

and
p1 = 1− p0 − p− = 1− be−a−b − ae−a.

3.3. Embedded Markov Chain

Recall again that if at the beginning of a session there were some delayed intervals (say q), then
at the end of a session their number either decreases by min(q, 2) (with probability p−), or increases
by one (with probability p1), or stays unchanged (with probability p0). If there were no delayed
intervals (q = 0), then a new delayed interval either appears at the end (with probability p1) or
not (with probability p− + p0). Therefore, the one-dimensional sequence Qn is also Markov,

Qn+1 = max(Qn + ξn, 0), (2)
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where {ξn} is a sequence of i.i.d. random variables,

P(ξn = 1) = p1, P(ξn = 0) = p0, P(ξn = −2) = p−.

This Markov chain admits a (unique) stationary distribution if and only if E ξn < 0, i.e., h :=
p1/2p− < 1. Denote this stationary distribution by {πi}i≥0.

Sequence (2) is known as an integer-valued random walk stopped at zero. In our case this random
walk is right-continuous; i.e., P(ξn ≥ 2) = 0. Note that all other algorithms described in Section 2.3
are also right-continuous. It is known (see, e.g., [10, ch. 11]) that for a right-continuous random
walk its stationary distribution is geometric,

πi = π0(1− π0)
i, i ≥ 0,

and that π0 is a unique solution z to the equation
∑

P(ξn = j)(1−z)−j = 1 in the domain z ∈ (0, 1).
In our case,

π0 =
3−

√
1 + 8h

2
.

Recall also the following well-known facts (which can also be found, say, in [10]). Assume that
h < 1. Let the initial value be Q0 = m ≥ 0, and let

τ (m) = min{n ≥ 1 : Qn = 0 | Q0 = m}.

Then τ (m) has all power moments finite, E
(
τ (m)

)k
< ∞ for all k > 0; moreover, there exists a

finite exponential moment, E ecτ
(m)

< ∞, for some c = cm > 0. In particular, E τ (0) = 1/π0 and
E τ (m) ≤ C +m/(2p− − p1) for some C and all m ≥ 1. Further, this Markov chain is geometrically
ergodic, i.e., there exists a constant C and, for any m ≥ 0, a constant cm such that, for all n ≥ 0,

sup
k

∣
∣P(Qn = k | Q0 = m)− πk

∣
∣ ≤ cme−Cn.

Note that the inequality h < 1 may hold for some positive parameters a and b. Indeed, it is
equivalent to the inequality

2p− − p1 = 3ae−a + (b− 2a)e−a−b − 1 > 0,

which holds if, say, a = 1 and b = 2.

Note also that, for a simpler algorithm where at most one delayed interval can be taken from
the queue, the embedded Markov chain might be positive recurrent only if p− > p1. But the latter
is equivalent to the inequality

2ae−a − ae−a−b + be−a−b > 1,

which has no solutions in the set of positive real numbers.

3.4. Procedure of Browsing a Nonempty Set

Assume that we know that a set D is nonempty, but its cardinality, say X, is unknown. Assume
further that X is random and has a known distribution. Introduce the following “identification”
algorithm for elements of this set.

At the first step, the whole set is browsed with probability one. If it contains only one element,
the procedure stops.
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Otherwise, at each of the subsequent steps, each element of the set is browsed with a fixed
probability α ∈ (0, 1), until the only element is identified. Clearly, given X = n, the number of
attempts is random and has a geometric distribution with parameter rn,α = nα(1 − α)n−1 and
mean 1/rn,α.

Then the identified element is removed, and the procedure is repeated: first, all the elements
are browsed with probability one and then, if their number exceeds one, the elements are browsed
repeatedly with probability α, and a next one is identified and removed. The procedure continues
until the set becomes empty.

Denote by Rα(X) the duration (i.e., the number of steps) of this procedure. Then

ERα(X) =
∞∑

n=1

E(Rα(X) | X = n)P(X = n)

=
∞∑

n=1

P(X = n)

(

1 +
n∑

m=2

(1 + 1/rm,α)

)

= EX +
∞∑

n=2

P(X = n)
n∑

m=2

1

rm,α
.

Note that

max
α

rm,α = rm,1/m = (1− 1/m)m−1.

Therefore, for any α ∈ (0, 1),

ERα(X) ≥ EX +
∞∑

n=2

P(X = n)
n∑

m=2

(1− 1/m)−m+1. (3)

Since (1 − 1/m)−m+1 > 2 for all m ≥ 2, inequality (3) implies, in particular, the following simple
lower bound:

ERα(X) ≥ 3EX − 2. (4)

3.5. Mean Duration of a Session

We continue to assume that h < 1. Let T be the duration of a typical session in the stationary
regime. Recall that T depends on five parameters, T = T (a, b, α0, α1, α2). Recall also that the
delayed intervals form a queue, and denote by Y (i) the number of messages in the ith interval in
the queue. By the construction, the random variables Y (i), i = 1, 2, . . . , are i.i.d.

Recall that there are three options:

1. With probability p0, there is only one message in the interval a+ b; then T = 1;
2. With probability p1, consecutive browsing of intervals a + b and a shows that the number of

messages in each of them differs from one; then T = 2;
3. IfXa+b �= 1 andXa = 1 (this occurs with probability p−), then the session duration is T = 2+T+,

where T+ equals either Rα0(X̃b) if the queue of delayed intervals is empty (i.e., with probabil-
ity π0), or Rα1(Y

(1) + X̃b) if there is only one interval in the queue (i.e., with probability π1),
or Rα2(Y

(1) + Y (2) + X̃b) if there are two or more intervals in the queue (i.e., with probability
(1− π0 − π1)).

Here X̃b is a random variable with distribution P(X̃b ∈ ·) = P(Xb ∈ · | Xb ≥ 1). We have the
equalities

ET = p0 + 2p1 + (2 +ET+)p− = 2− p0 + p−ET+

= 2− p0 + (E0π0 + E1π1 + E2(1− π0 − π1)) p−,
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where

E0 = ERα0(X̃b) = E X̃b +
∑

m≥2

1

rm,α0

P(X̃b ≥ m),

E1 = ERα1(Y
(1) + X̃b) = EY (1) +E X̃b +

∑

m≥2

1

rm,α1

P(Y (1) + X̃b ≥ m),

E2 = ERα2(Y
(1) + Y (2) + X̃b)

= EY (1) +EY (2) +E X̃b +
∑

m≥2

1

rm,α2

P(Y (1) + Y (2) + X̃b ≥ m).

Below are formulas for means of the random variables X̃b and Y (where Y has the same distribution
with the random variables Y (i), i = 1, 2), while the above sums can be explicitly found only by
using numerical methods. We have

E X̃b = E(Xb | Xb ≥ 1) =
EXb

P(Xb ≥ 1)
=

b

1− e−b
,

EY = E(Xa +Xb | Xa �= 1, Xa +Xb �= 1)

=
1

p1
E
(
(Xa +Xb)

(
I(Xa ≥ 2) + I(Xa = 0, Xb ≥ 2)

))

=
1

p1

(
a+ b− ae−a − be−a−b − abe−a).

Here I is the indicator function: I(B) = 1 if event B occurs, and I(B) = 0 otherwise.

3.6. Conditions for Positive Recurrence and Stability

Recall that, in the stationary regime, from N = 0 to N = 3 time intervals of length a + b can
be browsed in a single session, with probabilities

P(N = 0) = p1, P(N = 1) = p0 + p−π0,

P(N = 2) = p−π1, P(N = 3) = p−(1− π0 − π1).
(5)

Here EN = 1, and the mean cumulative length of all removed (completely browsed) slots is

L = (a+ b)EN = a+ b

(the latter makes sense since, within a typical session, the mean number of removed slots can be
neither greater nor smaller than the number of new slots, which is 1). Further, assume that the
Markov chain starts from the state (W0, 0) with Q0 = 0, and let τ = min{n : Qn = 0}. Let Ni be
the number of slots browsed in slot i, and Ti the length of session i. Then

E

(
τ∑

i=1

Ni

)

= E τ EN = E τ and E

(
τ∑

i=1

Ti

)

= E τ ET, (6)

where T is the length of a typical session in the stationary regime (which was studied in Section 3.5).

Definition 1. A Markov chain (Wn, Qn) is recurrent if there is a bounded set A = {W ≤ c1,
Q ≤ c2} such that

(1) τ(W,Q) = τ(W,Q)(A) = min{n ≥ 1 : (Wn, Qn) ∈ A | W0 = W, Q0 = Q} < ∞ a.s., for any initial
value (W,Q).
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A recurrent Markov chain is positive recurrent if

(2) sup
(W,Q)∈A

E τ(W,Q) < ∞,

and null recurrent otherwise.

We say that a Markov chain (Wn, Qn) is transient if Wn + Qn → ∞ a.s. as n → ∞, for any
initial value W0 = W , Q0 = Q.

Remark 1. Definitions of positive and null recurrence are standard. In fact, there are several
definitions of transience, and our definition corresponds to the most restrictive one.

Definition 2. An algorithm is positive/null recurrent or transient if the corresponding Markov
chain (Wn, Qn) is such.

Theorem 1. For a Poisson input flow with intensity λ and for any positive numbers a and b
and any collection of probabilities α, the algorithm described above is

(a) positive recurrent if 2p− > p1 and λ < L/ET , and

(b) transient if either λ > L/ET or 2p− < p1.

Remark 2. One can show that, under conditions (a) of Theorem 1, the set A is positive recurrent
for any choice of positive numbers c1 and c2.

Remark 3. One can also show that if 2p− = p1 and λ < L/E T , then the Markov chain is null
recurrent. Most likely, the same holds if 2p− > p1 and λ = L/ET . If this is true, then Theorem 1
can be formulated as a criterion: the algorithm under consideration is positive recurrent if and only
if conditions (a) hold.

Remark 4. The ratio L/ET is the rate of the algorithm. Recall that this ratio depends on five
parameters.

Definition 3. AMarkov chain {(Wn, Qn)} (and the corresponding algorithm) is ergodic if it has
a unique stationary distribution Π and, moreover, for any initial condition (W0, Q0), distributions
of random vectors {(Wn, Qn)} converge, as n grows, to the stationary one; and strong ergodic if in
addition the convergence is in the total variation norm, i.e.,

sup |P((Wn, Qn) ∈ B)−Π(B)| → 0, n → ∞,

where the supremum is taken over all two-dimensional measurable sets B.

Note that, in general, positive recurrence of a Markov chain does not guarantee existence (and
uniqueness) of its stationary distribution.

Theorem 2. Let C = supL/ET , where the supremum is taken over all values of the five
parameters for which 2p− > p1 (one may call C the capacity of the family of algorithms under
consideration).

(a) If λ < C, then one can choose parameters a and b and a collection of probabilities α which make
this algorithm strong ergodic. Then the basic process (W (t), Q(t)) is also ergodic and aperiodic,
and therefore there exists a proper stationary distribution, which is the limiting distribution of
vectors (W (t), Q(t)) in the total variation norm as t grows.

(b) If λ > C, then all algorithms under consideration are transient.

Remark 5. One can quite easily find an upper bound for C. Namely, one can apply (three times)
the lower bound (3) and then consider a simpler 2-parameter optimization problem.
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4. PROOFS

4.1. Proof of Theorem 1 (a)

Consider embedded moments of starts of the sessions kn for which Qkn = 0. These moments
divide time into cycles of lengths {kn − kn−1}, which are i.i.d. random variables having a common
distribution with random variable τ introduced in Section 3.6. Let W̃n = Wkn .

First we show that the Markov chain W̃n is positive recurrent. For that, we apply the first part
of Foster’s criterion (see Theorem 3 in the Appendix). In this part of the proof, we may assume
k0 = 0. Then, clearly, τ = k1 − k0.

Denote
Δx = E(W̃1 | W̃0 = x)− x

and show that

• the number Δx is bounded from above by the same constant for all x, and
• lim sup

x→∞
Δx < 0.

Then Foster’s criterion can be applied.

Indeed, the cumulative length of all browsed intervals in this cycle is L
τ∑

i=1
Ni, where L = a+ b

and Ni is the number of browsed intervals during the ith session. Note that E
τ∑

i=1
Ni = E τ ,

due to (6).

Since the total increase of W during time t is λt, its increase during the first cycle is not smaller

than λ
τ∑

i=1
Ti, and not greater than

λ
τ∑

i=1

Ti + (L+ 1)
τ∑

i=1

I(W x
i < L).

Here Ti is the duration of the ith session, and the upper index x means that the first session in the
cycle starts with W0 = W̃0 = x. Then W x

i ≥ x− 2iL for all x and i, and therefore

0 ≤
τ∑

i=1

I(W x
i < L) ≤

τ∑

i=1

I(x− iL < L) ≤ τI(x < 2Lτ + L),

where the upper bound τI(x < 2Lτ + L) tends monotonically to zero as x grows, both a.s. and in
mean (this follows from Lebesgue’s theorem). Therefore, as x → ∞, we have

Δx → λE τ ET − LE τ EN = E τ ET (λ− L/ET ) < 0.

Here N is the total number of browsed intervals within a cycle, and it has distribution (5). Since

Δx ≤ E

(

λ
τ∑

i=1

Ti + L
τ∑

i=1

I(W x
I < L)

)

≤ λE τ ET + LE τ < ∞

for all x, the Markov chain {W̃n} is positive recurrent.

Now we show that (Wn, Qn) is positive recurrent too. For that, we apply the first part of the
generalized Foster criterion (see Theorem 4 from the Appendix).

Let W0 = W ≥ 0 and Q0 = m ∈ {0, 1, 2, . . .}. Then, in the notation of Section 3.3, the random
variable τ (m) is a.s. finite and, moreover, has a finite mean. In this part of the proof, we have to
let k0 = τ (m). Further, W̃0 = Wτ (m) and

E W̃0 ≤ W +E τ (m)C = W +mC̃,
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where C = L+K0,

K0 = 2 +max
(
ERα0(X̃b), ERα1(Y

(1) + X̃b), ERα2(Y
(1) + Y (2) + X̃b)

)
< ∞,

and C̃ = C/(2p− − p1). We take a test function g of the form g(w,m) = w +m.

Let μ̃ = min{n ≥ 0 : W̃n ≤ g0}. Then, as follows from the above,

E(μ̃ | W̃0) ≤ K(W̃0 + 1)

for some constant K. If we denote

γ = min{n : Wn +Qn ≤ g0},

then

E(γ | W0 = W,Q0 = m) ≤ E τ (m) +E

( μ̃∑

i=1

zi

)

,

where zi is the length of cycle i (these lengths are i.i.d. with a finite mean). Thus, one can find
another absolute constant K̂ such that

E(γ | W0 = W, Q0 = m) ≤ K̂(W +m+ 1).

Therefore, Theorem 4 can be applied, and the Markov chain {Wn, Qn} is positive recurrent.

4.2. Proof of Theorem 1 (b)

If E ξn = p1 − 2p− > 0, then
n∑

i=1
ξi → ∞ a.s., eventually all Qn are strictly positive, and

Qn

n
→ E ξ1 > 0 a.s., as n → ∞,

by the strong law of large numbers.

Let now p1 < 2p− and λ > L/ET . Then again the cycles have finite mean E τ , and the mean
number of sessions per cycle is E τ ET . Since the total increase in the first coordinate of the

Markov chain per typical cycle is not smaller than λ
τ∑

i=1
Ti, then again, by the strong law of large

numbers,

lim inf
W̃n

n
≥ E τ ET (λ− L/ET ) > 0 a.s.

Now we show that Wn/n → ∞ a.s. too. For that, we refer to basic facts from renewal theory.

Denote again by τi the length of cycle i. The random variables {τi} are mutually independent

for i ≥ 1 and identically distributed (with finite mean) for i ≥ 2. Let Sm =
m∑

i=1
τi and, for n ≥ 1,

ηn = min{m : Sm ≥ n} and χn = Sηn − n.

It is known that χn/n → 0 a.s. Since WSm = W̃m, we have

Wn

n
≥ W̃ηn − λχn

n
=

W̃ηn

ηn

ηn
n

− λ
χn

n
→ ∞ a.s.

Indeed, since ηn → ∞ and ηn/n → 1/E τ > 0 as n → ∞, the divergence W̃n/n → ∞ implies also
that W̃ηn/ηn → ∞ a.s. and then that Wn/n → ∞ a.s.
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4.3. Proof of Theorem 2 (a)

We can always find binary rational values of λ, a, b, and c and a collection of probabilities α
for which 2p− > p1 and λ < L/ET . With these parameters, the Markov chain (Wn, Qn) lives on
a lattice. Since P(T = 1) > 0 and P(T = 1, τ = 1) > 0, the Markov chain is aperiodic, and all
its states commute. Therefore, the second part of the generalized Foster criterion is applicable,
and distributions of (Wn, Qn) converge to the stationary one in the total variation. Further, the
random sequence (W (t), Q(t)) is regenerative, and the regenerative cycle length may take value 1
with positive probability. Therefore, we can apply Theorem 5, and statement (a) follows.

4.4. Proof of Theorem 2 (b)

Convergence Wn +Qn → ∞ a.s. follows from statement (b) of Theorem 1.

5. DISCUSSION AND OPEN PROBLEMS

5.1. Computing the Capacity of the Algorithm

Recall that, for our algorithm, ET ≡ T (a, b, α0, α1, α2) is the mean number of slots in a session
for given parameters a, b, α0, α1, and α2. Also, the parameters p0 = p0(a, b), p− = p−(a, b), and
p1 = p1(a, b) depend on a and b.

By Theorem 2, the capacity is a solution to the following optimization problem: find the value of

C = sup{(a+ b)/T (a, b, α0, α1, α2)},

where the supremum in taken over all values of parameters α0, α1, and α2 from the interval (0, 1)
and over all nonnegative values of a and b such that p1(a, b)/(2p−(a, b)) < 1.

One can reduce this problem to a simpler one. Introduce a function of two parameters a and b

ϕ(a, b) = max(a+ b)/T (a, b, α0, α1, α2),

where the supremum is taken over all α0, α1, and α2 from (0, 1).

The function T (a, b, α0, α1, α2) can be represented as

T (a, b, α0, α1, α2) = γ(a+ b) +E0(a, b, α0) + E1(a, b, α1) + E2(a, b, α2), (7)

where

γ(a+ b) = 2− p0,

E0(a, b, α0) =

(

E X̃b +
∑

m≥2

1

rm,α0

P(X̃b ≥ m)

)

π0p−,

E1(a, b, α1) =

(

EY (1) +E X̃b +
∑

m≥2

1

rm,α1

P(Y (1) + X̃b ≥ m)

)

π1p−,

E2(a, b, α2) =

(

EY (1) +EY (2) +E X̃b +
∑

m≥2

1

rm,α2

P(Y (1) + Y (2) + X̃b ≥ m)

)

(1− π0 − π1)p−.

It follows from equation (7) that, in order to find values of ϕ(a, b) for fixed a and b, it suf-
fices to independently minimize the functions E0(a, b, α0), E1(a, b, α1), and E2(a, b, α2) by varying
α0, α1, and α2, respectively. Since all these functions are unimodal, the minimization can be done
efficiently.
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(a = 0.651;

b = 1.18)

Stability region of the queue.

Given the function ϕ(a, b), the problem of finding the capacity is reduced to solving a simpler
problem: find the value

C = supϕ(a, b),

where the supremum is over all nonnegative values of a and b such that p1(a, b)/(2p−(a, b)) < 1.

The latter problem can be solved numerically. The capacity value is 0.3098 (with an absolute
error of 10−4), and the optimal parameters are a ≈ 0.651 and b ≈ 1.18.

Computation of the function ϕ is very laborious. We guess that one can get a relatively good
approximation for C = supϕ(a, b) as follows: consider pairs (a, b) such that p1(a, b)/(2p−(a, b)) = 1
and find a pair that minimizes the value p0 = (a + b)e−a−b, which is the probability of success in
browsing the initial interval.

We cannot substantiate this conjecture as yet but would like to support it by the following
illustration.

In the figure we consider the plane (a, b) and mark out the area where p1(a, b)/(2p−(a, b)) < 1.
We call this area the stability region of the queue. In the interior of the region, we draw three level
lines ϕ(a, b) = 0.3, ϕ(a, b) = 0.29, and ϕ(a, b) = 0.28. Note that the function p0(a, b) = (a+b)e−a−b

has linear level lines b = D−a, where D is a constant and the value of p0(a, b) at this level is De−D.
Any point in the interior satisfies a + b > 1, and the value of De−D increases as the level lines
move closer to the origin, within the stability region. The supremum of p0(a, b) = (a+ b)e−a−b in
the stability region seems to be equal to the value of the function p0(a, b) = (a + b)e−a−b at the
contact point of the line b = D − a and the boundary of the stability region. We have a numerical
confidence for this.

5.2. Open Problems

The methods and computations that we used can be applied to all algorithms with delayed
intervals introduced earlier. However, the greater the number of segmentations of the basic interval,
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the greater the number of parameters involved and, therefore, the more complex the optimization
problem. For example, in [7] the basic interval is segmented into three intervals, say a, b, and c, and
the function ϕ(a, b, c) depends on three parameters. Again, the problem of finding the capacity can
be reduced to finding the supremum of this function in the stability region. Numerical computations
show that the capacity of this algorithm is 0.318; this refines a lower bound obtained in [7]. Again,
the stability region is a convex set, and the capacity is attained at the point of contact of the level
line a+ b+ c = D and the stability region. As in the previous case, this point is the closest to the
origin among all boundary points. Therefore, we may conjecture that for this algorithm it suffices
to find a point a, b, and c on the boundary of the stability area which minimizes the probability of
success of browsing the basic interval—this gives us the capacity.

For the class of algorithms with delayed intervals, numerical analysis shows that the capacity
does not increase (as compared to the algorithm of [7]) with the increase of the number of segments
and/or with complication of the way of taking delayed intervals from the queue. Therefore, we
conjecture that the capacity of the whole class is approximately equal to 0.318.

We have to point out that the algorithm under consideration has the following drawback. Assume
that the input intensity λ is smaller than the capacity C. By Theorem 2, with this intensity one
can always find parameters A and B which make the system stable. Here a = λA, b = λB, and
the point (a, b) belongs to the stability region (see the figure). However, for fixed A and B, one
can always choose an intensity λ0 < λ < C so that the point (λ0A,λ0B) is outside of the stability
region. This means that if the algorithm is stable for a given value of input rate λ, it may become
unstable not only with increase, but also with decrease of λ. The closer λ to the capacity, the
narrower the interval of its values that make the algorithm stable. All algorithms with delayed
intervals have this drawback. Development and analysis of algorithms that do not have such a
shortcoming is an interesting and open problem.

The main part of this paper was completed during a visit of the first author to the Heriot-
Watt University under the financial support of Spotnet project, EURONF Network of Excellence,
Framework 7. The authors acknowledge the support of the program and the hospitality of the
Heriot-Watt University.

APPENDIX

We recall a number of well-known results (the first two can be found, e.g., in survey [11]). The
first statement is known as the Moustafa–Foster–Tweedie criterion, or, for short, Foster’s criterion.

Theorem 3. Let {Zn} be a time-homogeneous Markov chain taking values in a measurable state
space (Z,BZ), and let g : Z → [0,∞) be a measurable function. If, for some positive C, g0, and ε,

(1) E(g(Z1) | Z0 = z) ≤ C a.s. for all z such that g(z) ≤ g0,
(2) E(g(Z1) | Z0 = z) ≤ −ε a.s. for all z such that g(z) ≥ g0,

then the set {z : g(z) ≤ g0} is positive recurrent and, moreover, for any z, the random variable

μz = min{n ≥ 1 : g(Zn) ≤ g0 | Z0 = z}

has a finite mean and
Eμz ≤ g(z)/ε.

If, in addition, the set {z : g(z) ≤ g0} is finite and the Markov chain is irreducible and aperi-
odic, then it is ergodic, i.e., it has a unique stationary distribution and, for any initial value, the
distribution of Zn converges to the stationary one in the total variation norm.

The following result can be regarded as the “generalized Foster criterion” (see also [11]). It is
applicable in more general situations and, in particular, to increments of a Markov chain on random
time intervals.
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Theorem 4. Let {Zn} be a time-homogeneous Markov chain with values in a measurable space
(Z,BZ), and let g : Z → [0,∞) be a measurable function. Let νz be a sequence of random stopping
times (this means that, for any z ∈ Z and for the Markov chain Z0, Z1, . . . with initial value Z0 = x,
there exists a positive and integer-valued random variable νz such that, for any n = 0, 1, . . . , the
event {νz ≤ n} belongs to the σ-algebra generated by the random variables Z0 = z, Z1, . . . , Zn).

If, for some positive C, c1, c2, g0, and ε,

(1) E(g(Zνz ) | Z0 = z) ≤ C a.s. for all z such that g(z) ≤ g0,
(2) E(g(Zνz ) | Z0 = z) ≤ −ε a.s. for all z such that g(z) ≥ g0,
(3) E νz ≤ c1 + c2g(z) for all z ∈ Z,

then the set {z : g(z) ≤ g0} is positive recurrent and, moreover, for any z, the random variable

μz = min{n ≥ 1 : g(Zn) ≤ g0 | Z0 = z}

has a finite mean and
Eμz ≤ g(z)/ε.

If, in addition, the set {z : g(z) ≤ g0} is finite and the Markov chain is irreducible and aperi-
odic, then it is ergodic, i.e., it has a unique stationary distribution and, for any initial value, the
distribution of Zn converges to the stationary one in the total variation norm.

Now we formulate a statement on convergence of regenerative processes in discrete time. A se-
quence {Zn} is regenerative if there are integer-valued random times S0 = 0 ≤ S1 < S2 < . . . such
that random elements Vk = (Sk − Sk−1, ZSk−1

, ZSk−1+1, . . . , ZSk−1) are mutually independent for
k ≥ 1 and identically distributed for k ≥ 2.

The following result may be found in many texts on renewal theory (see, e.g., [12]).

Theorem 5. If a sequence {Zn} is regenerative and if, in addition,

(a) E(S2 − S1) < ∞, and
(b) the greatest common divisor of all j such that P(S2 − S1 = j) > 0 is equal to 1,

then the distribution of Zn converges in the total variation norm, as n → ∞, to a limiting distri-
bution Π of the form

Π(B) =

E

(
S2−1∑

n=S1

I(Zn ∈ B)

)

E(S2 − S1)
.
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