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Abstract—A novel tree multiple access algorithm is discussed,
which is robust to imperfect successive interference cancellation.
The algorithm exploits a single memory location to store the
captured packets and thus has feasible complexity. For this al-
gorithm, the performance evaluation is conducted, which focuses
on its transmission rate and mean packet delay. Both virtual and
actual delays are established analytically. Additionally to Poisson
arrivals, bursty arrival model is considered and the analysis
is extended respectively. The results are new and important to
conclude upon the efficiency of the proposed algorithm.

Index Terms—multiple access, collision resolution, tree algo-
rithm, successive interference cancellation, performance analysis.

I. INTRODUCTION AND BACKGROUND

Contemporary wireless networks exploit various Medium
Access Control (MAC) approaches suggesting efficient solu-
tions to arbitrate access of multiple users to the shared com-
munication channel. Among these, Random Multiple Access
(RMA) algorithms are preferred under bursty load and allow
reaching considerably low mean packet delay values even
when user population is considerably high.

We remind that each RMA algorithm comprises a Chan-
nel Access Algorithm (CAA) and a Collision Resolution
Algorithm (CRA). The former arbitrates user channel ac-
cess, whereas the latter handles collisions, whenever two or
more packets are transmitted over the channel simultaneously.
Currently, the family of ALOHA-based algorithms is widely
exploited and represented by diversity slotted ALOHA, binary
exponential backoff, and many other schemes. Importantly, as
these approaches are very simple, they concentrate more on
CAA rather than on CRA and thus are less efficient. Generally,
in case of a collision, the packet retransmission is deferred for
a random time interval.

By contrast, tree RMA algorithms focus on CRA and thus
demonstrate better performance comparing to ALOHA-based
solutions. Historically, Standard Tree Algorithm (STA) and
Modified Tree Algorithm (MTA) were the first ones to be
proposed in [1] and [2] independently. We refer to these
approaches as to conventional tree algorithms in what follows.

The previous analysis of conventional tree algorithms typ-
ically assumed that whenever packets collide (or, interfere

wirelessly) the receiver extracts no meaningful information.
Recent advances at the physical layer enable the application
of Successive Interference Cancellation (SIC) techniques [3],
[4] to improve performance. SIC may be naturally used in
the uplink channel of contemporary cellular networks [5], as
common receiver (e.g. base station) facilitates the operation of
SIC.

A novel approach that tailors SIC to a tree algorithm
(SICTA) was proposed in [6]. Summarizing, SIC processes
the previously stored collision packets (signals) and takes
advantage of unbounded signal memory. Whereas infeasible,
the availability of infinite memory allows the original SICTA
to double the performance of STA. This promising idea was
taken further and a variety of SICTA modifications were
proposed in [7], [8], [9], [10].

All the existing SICTA-based solutions may be classified
into two categories. Firstly, there are algorithms that assume
perfect SIC operation and therefore are susceptible to can-
cellation errors falling into a deadlock. Secondly, there are
algorithms that are robust to imperfect SIC operation, but
at the same time are unstable when the number of users
grows unboundedly. In our previous work [11], we proposed a
robust SICTA (R-SICTA) algorithm that tolerates cancellation
errors and demonstrates nonzero performance when the user
population is infinite. In this paper, we conduct the analysis
of the extended R-SICTA and establish its transmission rate
and mean packet delay. In particular, we consider both virtual
and actual delay definitions from [12] and conclude upon the
efficiency of the proposed algorithm.

II. SYSTEM MODEL

A. Proposed Algorithm

We consider classical system model widely used to compare
and contrast various RMA algorithms and described as long
ago as in [13], [14]. We further extend it to account for the
SIC operation. Figure 1 demonstrates a simple example of how
SIC may improve the time of collision resolution.

We assume that the infinite population of users commu-
nicates data packets to a common receiver. In each time
slot, the receiver acquires packets (signals) from its wireless
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Figure 1: A simple example of SIC operation

link and processes them. Consequently, the receiver reports
the information about the channel events (empty, success, or
collision) and the SIC output to the users by the end of
the current slot. The feedback is error-free and is available
immediately.

Consider two data packets from users A and B colliding in
slot t. Denote by yt the signal at the receiver by the end of
slot t and by xA and xB the transmitted signals corresponding
to packets from A and B respectively. Therefore, the signal
yt is a combination of signals xA and xB . Assuming an error-
free link, we may write yt = xA + xB . Processing the signal
yt, the receiver detects a collision and stores yt in its signal
memory. The collided users then decide if they retransmit in
slot t + 1 with probability 1

2 . According to our example, only
one user accesses the channel in slot t + 1. The receiver thus
acquires the signal yt+1 = xA and extracts the signal xA. As
such, the packet from A is received successfully.

Further, the SIC procedure at the receiver processes the
stored collision signal yt and cancels the successfully extracted
signal xA. We denote the cancellation operation by yt − xA

and obtain ỹt = yt − xA. The SIC receiver then extracts
the signal xB = ỹt also by the end of slot t + 1 and thus
the packet from B is also received successfully. As such,
the subsequent collision resolution is not necessary. In the
considered example, the collision resolution process lasts one
slot less taking advantage of SIC capability. We say that this
slot may be skipped. Otherwise, a retransmission of the packet
from B would be attempted according to a conventional CRA.

Most works on SICTA operation assume perfect interference
cancellation. For the example in Figure 1, it means that xB

is extracted from yt and xA with probability 1. We however
extend the model for the more realistic case of imperfect
SIC operation. Consequently, the packet from B is restored
successfully with some probability less than 1. Otherwise,
a cancellation error occurs and the signal ỹt = yt − xA is
perceived as a collision with the complementary probability.
The cancellation success probability depends on the SIC
receiver implementation and on the channel events. In our
previous work [11], we proposed a novel R-SICTA algorithm
that is robust to cancellation errors and takes advantage of a
single signal memory location.

The main purpose of the considered R-SICTA algorithm
exemplified in Figure 2 is to avoid the deadlock effect of
the original SICTA algorithm. In the example, the best case

time diagram corresponds to two successful SIC operations,
whereas the worst case diagram illustrates two cancellation
errors. For more details on the algorithm operation, including
its formal description the reader is referred to [11]. In Figure 3,
we address important channel events as follows.
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Figure 2: Examples of proposed R-SICTA operation

• Figure 3, a, when a collision slot is followed by an empty
slot. The MTA rules allow to skip a collision slot with
probability 1.

• Figure 3, b, when a collision slot is followed by a
collision slot. The SIC operation allows to skip an empty
slot with probability 1− qce.

• Figure 3, c, when a collision slot is again followed by a
collision slot. The SIC operation allows to skip a success
slot with probability 1− qcs.

• Figure 3, d, when a collision slot is followed by a success
slot. The SIC operation allows to skip a success slot with
probability 1− qss.
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Figure 3: Some important channel events

B. Main Definitions
Following [12], we formally define an RMA algorithm Ω as

a rule according to which a user with a pending packet decides

774



whether it should attempt its transmission in slot t ∈ {1, 2, ...}
or to defer channel access.

We assume that if a packet arrives in slot t then the arrival
time is a random variable x distributed uniformly over the slot
duration [t − 1, t). As such, an RMA algorithm is a function
of three arguments:

• Packet arrival time x.
• Sequence θ(t) = (θ1, . . . , θt) of channel events. Here

θi = E if slot i is empty, θi = S if there is a success in
slot i, and θi = C if there is a collision in slot i.

• Sequence ν(x)(t) = (ν(x)
1 , . . . , ν

(x)
t ) of user decisions

regarding the packet arrived at time x. Here ν
(x)
i = 0 if

the user decided not to transmit the packet in slot i and
ν

(x)
i = 1 otherwise.

Analyzing the performance of an RMA algorithm Ω, its
transmission rate and mean packet delay are typically of
primary interest [15]. These important metrics established in
the framework of the discussed classical model are commonly
used to compare and contrast the performance of various RMA
algorithms.

Packet delay δΩ(λ) is a random time interval from the
moment x a packet arrives into the system to the moment
when the successful transmission of this packet ends. Here λ
is the overall mean arrival rate of new packets.

Considering now the mean packet delay, there are two
popular definitions depending on how the delay is actually
measured [12]. Let us inject an extra packet into the system
at time t and denote its delay by δ

(t)
Ω (λ). Mean virtual packet

delay is:

DΩ(λ) , lim sup
t→∞

E[δ(t)
Ω (λ)]. (1)

Alternatively, we enumerate all the packets in the order of
their arrival into the system. Mean actual packet delay is:

D′
Ω(λ) , lim sup

n→∞
E[δ(n)

Ω (λ)], (2)

where δ
(n)
Ω (λ) is the delay of the tagged packet number n.

In the classical case of Poisson arrivals, the mean virtual
delay and the mean actual delay are equal for known tree
algorithms [15], that is D′

Ω(λ) = DΩ(λ). However, if arrivals
are bursty, the mean delays may diverge depending on the
arrival flow parameters. We elaborate more on this fact in what
follows.

Finally, the transmission rate (or, maximum stable through-
put) of an RMA algorithm is the highest possible (Poisson)
arrival rate λ that still yields finite packet delay with proba-
bility 1, that is:

RΩ , sup{λ : DΩ(λ) < ∞}. (3)

Note that conventional STA and MTA have the transmission
rates of 0.346 and 0.375 respectively for binary and fair tree
splitting.

III. TRANSMISSION RATE CALCULATION

A. Standard Tree Algorithm

In the rest of the text, we concentrate exclusively on
the tree multiple access algorithms. As such, the function
Ω(x, θ(t),ν(x)(t)) may take only two different values: 0 and
1. As such, a user either transmits its packet in a slot or defers
transmission with probability 1. The function Ω is determined
by both CAA and CRA. Accordingly, the end nodes (leaves)
of a collision resolution tree are labeled by events E or S,
whereas remaining nodes are labeled by event C.

Collision Resolution Interval (CRI) length is defined as
the number of slots required to build a complete collision
resolution tree. For conventional STA, the number of nodes
in its collision resolution tree is equal to the CRI length.
Denote random CRI length by τ . Its conditional mean gives
the average collision resolution time:

Tk = E[τ |collision of size k is being resolved]. (4)

For the transmission rate RΩ of any known tree algorithm,
the following bounds are proved [1]:

lim inf
k→∞

k

Tk
< RΩ < lim sup

k→∞

k

Tk
. (5)

Asymptotically, for the conventional STA it holds [16]:

Tk

k
=

2
ln 2

+ H sin (2π log2 k + φ) + O

(
1
k

)
, (6)

where H = 3.127 · 10−6 and φ = 0.9826.
From (5) and (6), it readily follows:(

2
ln 2

+ H

)−1

< R <

(
2

ln 2
−H

)−1

, (7)

where R is the transmission rate of the conventional STA.
Therefore, we repeat the classical result:

R ≈ 2
ln 2

. (8)

B. SICTA-based Algorithms

Below we propose a simple but general method to calculate
the transmission rate of existing SICTA-based algorithms. The
key idea is that the operation of any known tree algorithm may
be regarded as the collision resolution tree of STA, where
the time required to label some tree nodes is zero (as the
respective time slots are skipped). Our method is composed
of the following steps:
• A rule to match the collision resolution tree nodes with

the CRI length is formulated for the studied algorithm.
• Contrasting this rule against the STA rule, the mean CRI

length of the studied algorithm is expressed as a function
of the CRI length of STA.

• Accounting for (6), the bounds on the transmission rate
of the studied algorithm are established.

For the original SICTA algorithm, each tree node labeled by
event C is put into correspondence to a value of a collision
signal. This value is either extracted directly from the link
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or calculated by SIC. The rule of correspondence between
the tree nodes and the time slots, as well as collision signal
extraction rule are the following.

Consider slot t which corresponds to the upper tree node.
Let V (P ) be the signal corresponding to node P , Pcur be the
node corresponding to the current slot t, Ptmp be the lower
tree node adjacent to node Pcur, and Pprev be the parent node
for both Pcur and Ptmp. We describe the possible situations
in slot t as follows.

1) If in slot t node Pcur receives label C, then in this slot
node Ptmp is not labeled. The upper child of node Pcur

becomes the current node in slot t + 1.
2) If in slot t node Pcur receives label E (see Figure 4, a),

then in this slot node Ptmp is labeled by C and
V (Ptmp) = V (Pprev). The upper child of node Pcur

becomes the current node in slot t + 1.
3) If in slot t node Pcur receives label S (see Figure 4, b),

then in this slot for node Pprev the following steps apply:
• Vtmp = V (Pprev)− V (Pcur) is calculated.
• Vtmp value is analyzed by SIC. If Vtmp corresponds

to a successful signal or to a collision signal, then
in this slot node Ptmp is labeled by S or C respec-
tively.
As such, the lower child of node Pprev is labeled.

• For nodes Pprev and Ptmp the signal values are
established: V (Pprev) = Vtmp, V (Ptmp) = Vtmp.

• If Vtmp corresponds to a successful packet, then
node Pprev is temporarily set as the current. For
this node, its adjacent node, and its parent node the
above three steps are repeated. That is, the collision
resolution tree is analyzed backwards toward the
root and as the result some lower nodes may become
labeled. If Vtmp corresponds to a collision, then the
upper child of node Ptmp becomes the current node
in slot t + 1.

From the above description of the original SICTA algorithm,
it follows that all the lower nodes are labeled in no time
(and the respective time slots may be skipped). As such, the
following equation holds:

TS
k =

Tk − 1
2

+ 1, (9)

where TS
k is the mean CRI length for the original SICTA

algorithm.
Using the above together with (6), we establish the follow-

ing bounds on the transmission rate RS of SICTA:(
1

ln 2
+

H

2

)−1

< RS <

(
1

ln 2
− H

2

)−1

. (10)

As the bounds are close enough, the RS of SICTA is approx-
imately 0.693. This value was established earlier in [6] with
a far more complicated analytical approach.

However, as mentioned above, the unbounded signal mem-
ory requirement of the original SICTA algorithm and its
vulnerability to cancellation errors prohibit its practical im-
plementation. To mitigate these limitations, we refrain from

C

C

E

C

S lot t S lot t  +  1

P cur

P tmp

a)

b)

P prev

V (P prev )

C

C

S

S lot t

P cur

P tmp
P prev

V (P prev )

P tmp is  la b e le d
d e p e n d in g  o n  th e  va lu e  

o f s ig n a l V tmp

V tmp =V (P prev)-V (P cur)

V tmp =V (P prev)

Figure 4: Tree node labeling for SICTA

skipping some lower tree node and thus propose R-SICTA
algorithm. R-SICTA is more robust for the cost of some
reduction in the transmission rate. Its formal description from
[11] requires respective modifications of situations 1 and 3
(see Figure 5). Therefore, and also using relationships from
[16], the mean CRI length TRS

k of R-SICTA is given by:

T RS
k =

(
1

2
+

qce

4

)
Tk−

1

2
+

qce

4
+

k

2
(1+qcs−qce)+

Nk

2
(qss−qcs),

(11)
where Nk is the mean number of collisions of size two in

the STA collision resolution tree of initial size k, whereas
probabilities qce, qss, and qcs were defined above.

The derivation of Nk is a separate problem that we solved in
[11]. To summarize, with the precision of at least three decimal
digits, lim sup

k→∞

Nk

k = lim inf
k→∞

Nk

k = γ = 0.721. We note that

as the bounds on the transmission rate RRS of R-SICTA are
again close enough, the following approximate value holds:

RRS ≈
2 ln 2

2 + qce + 2 ln 2(1 + qcs − qce + (qss − qcs)γ)
.

(12)
In particular, in case of perfect interference cancellation (qce =
qss = qcs = 0), the RRS of R-SICTA is approximately 0.515.

The proposed transmission rate calculation technique is
novel and important for the performance evaluation of tree
RMA algorithms, as it allows for the analysis of known and
future algorithms using the existing knowledge behind STA.

IV. MEAN PACKET DELAY

A. Virtual Delay Analysis

We consider an embedded Markov chain, where chain state
is the CRI length. As such, a semi-infinite transition probabil-
ity matrix may be composed and its stationary distribution πn
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Figure 5: Tree node labeling for R-SICTA

may be established numerically. For the sake of simplicity, we
change some of the previous notations in this section. Using
Markov chain theory, we calculate the probability that a tagged
packet arrives during a CRI of length n as:

π̃n =
nπn

N
, (13)

where N is the mean CRI length.
For the considered R-SICTA algorithm, the virtual packet

delay δ is composed of two components δ = δ1 + δ2, where
δ1 is the time interval from the packet arrival time to the end
of the current CRI and δ2 is the time interval from the start
of the following CRI to the end of the successful transmission
of the packet.

Coming to the expected values, the mean virtual delay of
R-SICTA is given by DRS = E[δ1] + E[δ2]. We introduce
auxiliary notations: un is the mean value of δ1 conditioning
on the fact that the tagged packet arrives during the CRI of
length n, whereas d(n) is the mean value of δ2 conditioning
on the same fact. Therefore, we have:

DRS =
∞∑

n=1

π̃n · [un + d(n)] . (14)

We also introduce dk as the mean CRI length conditioning
on the fact that the size of the current collision without the
tagged packet is k. The value of dk is determined by the
properties of CRA. As the size of the current collision depends
on the number of new arrivals during the previous CRI, the
values d(n) and dk are related as:

d(n) =
∞∑

k=0

dk · Pr {ξu = k|τu−1 = n} . (15)

Here the probability Pr {ξu = k|τu−1 = n} is determined by
the arrival flow type, where τi is the duration of the i-th
collision and ξi is the size of the i-th collision.

Additionally to Poisson arrival flow, we consider a more
realistic bursty arrival model. The state of the packet source
is set randomly and memorylessly to either ON or OFF
at the beginning of each slot with probabilities pon and
poff = 1 − pon respectively. In state ON, the packets arrive
according to Poisson distribution with the mean arrival rate
of λon. Similarly, the mean Poisson arrival rate in the OFF
state is λoff . The resulting overall mean arrival rate is thus
λ = ponλon+(1−pon)λoff . Clearly, when pon = 1 the arrival
flow becomes Poisson with the mean arrival rate of λon.

For both Poisson and bursty arrival flows it holds un = n
2 .

Further, for Poisson arrival flow only we establish:

Pr {ξu = k|τu−1 = i} =
(λi)k

k!
· e−λi, (16)

whereas for bursty arrival flow it holds:

Pr {ξu = k|τu−1 = i} =

=
t∑

s=0

k∑
i=0

(λons)i

i! e−λons [λoff ·(t−s)]k−i

(k−i)! e−λoff (t−s)β,
(17)

where β = Cs
t ps

on(1− pon)t−s.

B. Actual Delay Analysis

We now consider an embedded Markov chain, where chain
state is the size of a collision. Again, a semi-infinite transition
probability matrix may be composed and its stationary dis-
tribution πk may be established numerically. Using Markov
chain theory, we calculate the probability that a tagged packet
is transmitted during a CRI of size k as:

π̃k =
kπk

K
, (18)

where K is the mean CRI size.
For the considered R-SICTA algorithm, the actual packet

delay δ′ is again composed of two components δ′ = δ′1 + δ′2,
where δ′1 is the time interval from the packet arrival time to
the end of the current CRI and δ′2 is the time interval from
the start of the following CRI to the end of the successful
transmission of the packet.

Analogously to the above, the mean actual delay of R-
SICTA is given by D′

RS = E[δ′1] + E[δ′2]. Its first component
is calculated as:

D′
1 =

∞∑
s=1

π̃(s) · us, (19)

where us = s
2 and π̃(s) is the probability that a packet arrives

during CRI of length s. The second component is calculated
as:

D′
2 =

∞∑
k=1

π̃k · dk−1. (20)
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Figure 6: Mean packet delay results

V. NUMERICAL RESULTS AND CONCLUSIONS

In this section, we exemplify our main result of mean packet
delay calculation for the proposed R-SICTA algorithm. For
simplicity, here we assume perfect interference cancellation
(qce = qss = qcs = 0) and λoff = 0. We remind that when
there are no cancellation errors, the transmission rate of R-
SICTA is approximately 0.515.

Figure 6 plots mean packet delay values for two scenarios.
In particular, Figure 6, a contrasts Poisson and bursty arrivals
with equal overall mean arrival rate λ. Mean virtual and actual
delays are also shown, of which the former is generally lower
as the tagged packet has a high probability to arrive during
the OFF state. In Figure 6, b we fix λ = 0.3 and vary pon. As
expected, when pon = 1 both virtual and actual packet delays
converge.

In this paper, we considered a family of multiple access al-
gorithms using successive interference cancellation. A simple
but robust tree algorithm with a single signal memory location
was proposed and analyzed. We established its transmission
rate and mean packet delay, whereas we differentiated between
virtual and actual delay definitions. Additionally, both Poisson
and bursty packet arrival flows are taken into account. We
conclude that the proposed algorithm is an attractive and feasi-
ble solution to be exploited in contemporary cellular networks
with common receiver, e.g. at the bandwidth requesting stage
in [5], to increase channel utilization and decrease mean delay.
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