
The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008)

EXTENDED YUV COLOR TRANSFORM FOR LOSSLESS IMAGE COMPRESSION

ABSTRACT

Colorspace transforms (e.g. well-known YCrCb (YUV) in
H.264, ICT in JPEG2000 etc.) are widely used in image
compression and processing. The main goal of colorspace
transform in image compression algorithms is to decrease
dependence between image components that improves
compression efficiency of the whole image coding system.
But experiments show that standard colorpace transforms
quite weakly decompose and decorrelate computer graphic
images with color text, icons etc.

The proposed in this paper Extended Colorspace Transform
solves the described problem. Applied to lossless image
compression algorithms (JPEG-LS, H.264/AVC in lossless
mode) it allows to significantly (up to 52%) increase
compression ratio for synthetic images and computer graphics
without any losses for photorealistic images.

I. INTRODUCTION

Color space is built in the way that any color is represented by
point with definite coordinates. One color corresponds to one
set of coordinates and one point of color space. Number of
coordinates determines the color space dimension.

One of the most widespread color spaces is RGB. It is a
three-dimensional color space, in which any color is defined
by three coordinates. Each coordinate corresponds to one
component in color decomposition on red (R), green(G) and
blue(B).

In this article widely-used in the state-of-art algorithms of
image compression (JPEG, MPEG2, H264/AVC) color
transforms, namely RGB↔YUV, RGB↔YCbCr, are
analysed.

To explain the necessity of using these color transforms first
we should explain basics about color spaces by the example
of RGB and underline several important problems.

Assume rgb is some specific image from number of RGB
images. Let us define the probability distribution
{p()},rgb rgb RGB∈ at all discrete sets of RGB color space.
Number of bits, required for storage of specific image rgb can
be calculated as a magnitude of self-information

I() log p()l rgb rgb= = − , where p()rgb is probability of image
appearance. Therefore, to get the number of bits required for
coding of statistically independent image series we need to
calculate the following formula:

()

1
I() E[I()]

(p() I()) H()

N
i

Ni

rgb RGB

L rgb N rgb

N rgb rgb N RGB

→∞
=

∈

= ≈ ⋅ =

= ⋅ = ⋅

∑

∑
 (1)

To calculate the minimum number of bits that is needed for
coding of image series (L) it is necessary to know the entropy
of all RGB multitude. Since the probability distribution
{p()},rgb rgb RGB∈ is not available, exact value of L can not
be calculated. Anyway, any real system of lossless image
coding can not use less than H()N RGB⋅ bits for coding of
image series [1].

General scheme of static image codec is presented on the
Fig.1. Source image enters forward color transform block. It
is intended for creating new color space components which
are less dependent. The ideal color transform has two
properties:

1. H() H()RGB YUV= .
2. The following equality holds for new color components:

p() p()p()p()yuv y u v= .
In turn, from 1 and 2 follows H() H() H() H()YUV Y U V= + + ,

meaning that color components can be coded independently.

Figure 1: Structure of static image codec.

The inequality H() H() H() H()YUV Y U V≤ + + is satisfied for
majority of color transforms, as the dependence among color
components remains. It is impossible to verify given
inequality because neither distributions RGB nor YUV are
known. The presence of dependence among components can
be observed only on the qualitative level. The paper [2]
suggested using correlation criterion instead of dependence
characteristics among images. In conformity with this
criterion color transform decreasing the components cross-
correlation is suggested. We can give the examples of images
for which transform from paper [2] really decreases cross-
correlation coefficient among components (as compared with
YCbCr), but in phase of compressing this transform gives
worse results then usage of YCbCr, so correlation criterion
does not always work.

Victor Minchenkov Anton Sergeev Andrey Turlikov
State University of
Airspace Instrumentation

State University of
Airspace Instrumentation

State University of
Airspace Instrumentation

St. Petersburg, Russia St. Petersburg, Russia St. Petersburg, Russia
victor@vu.spb.ru slaros@vu.spb.ru turlikov@vu.spb.ru

mailto:victor@vu.spb.ru
mailto:slaros@vu.spb.ru
mailto:turlikov@vu.spb.ru

The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008)

II. YUV COLORSPACE TRANFORM

The problem of RGB color space is that components are very
dependent. The same information is represented in all three
components, meaning that the same image details could be
observed in every component. As a result, compression
efficiency decreases and another non-RGB color space is
needed. That is why linear transformations like YUV
(YCbCr) [3] are used in the majority of codecs for reducing
of components dependence. YCbCr is the digital version of
well-known YUV transform and very often these two
notations are used as synonyms. So in this paper YCbCr is
selected for all explanations and calculation.

Forward transform from RGB in YCbCr:

0.299 0.587 0.114

0.168736 0.331264 0.5 128
0.5 0.418688 0.081312 128

Y R G B
Cb R G B
Cr R G B

= + +
 = − − + +
 = − − +

 (2)

Inverse transform from YCbCr in RGB:

 1.402(128)
 0.7141(128) 0.34414(128)
 1.772(128)

R Y Cr
G Y Cr Cb
B Y Cb

= + −
 = − − − −
 = + −

 (3)

One could note that all values of components Y, Cr and Cb
are aligned in range [0,255]. YCbCr transform on average
shows good results in decomposition of photorealistic images.
And therefore YCbCr image representation could be
compressed more efficiently than RGB one.

But experiments show that for computer graphics and
synthetic images YCbCr demonstrates much worse results.
Due to specifics of that class of images (many edges, color
transitions etc.) YCbCr decomposition works weakly and an
information redundancy may be found in all the components
after transform (see Fig. 2 a, b and c). That leads to degrading
of compression ratio of computer graphics (with color text,
icons etc.) in comparison to the photorealistic images.

 (a) (b) (c)

 (d) (e) (f)

Figure 2: Y (a), Cr (b) and Cb (c) components of color text
image after standard YCbCr transform;

Y (d), Cr (e) and Cb (f) components of color text image after
Extended YCbCr transform.

In the Fig. 2 (a, b, c) Y, Cr and Cb components of color text
image are represented. One could see that the same text exists
in all the 3 components due to high dependence between
them.

III. EXTENDED COLORSPACE TRANFORM

A. Main Idea
In this section the Extension for YUV transform is proposed
to improve compression of computer graphics.

From the equations (2) and (3) one could note that value
Y=255 holds only for RGB = 0,0,0 (black color). This is the
only point in RGB colorspace for which Y takes on the value
of 255. So for inverse transform YCbCr → RGB of black
color Cb and Cr components are optional. And black color in
RGB representation could be reconstructed from YCbCr
using Y component only. Forward transform:

 0,0,0)(THEN 0,0,0)(IF == YCbCrRGB (4)
Inverse transform:
 0,0,0)(THEN 0 IF == RGBY (5)
Therefore for black pixels any data may be written to Cb

and Cr components at coder side because Y=0 is the unique
condition for successful YCbCr → RGB reconstruction in this
case.

 [data2] ,[data1] AND 0 THEN
 0,0,0)(IF

CrbCY
RGB

→→=
=

(5)

Cb ’Cb

Y Y=0

Y≠0

Figure 3: Example of redefining Cb component.

Assuming that background is black the redefinition
mechanism from equation (5) could be applied. Assume
alsothat image consists of equal domains. Obviously from the
position of compression CrCb components of the second
frequent color in the current domain should be used for
redefinition of the corresponding components of background
pixels (see Fig. 3) to improve coding rate. Forward transform:

 , AND 0 THEN

 0,0,0)(IF

bsbsb

bbb

CrCrCbCbY
BGR

→→=
=

 (6)

Inverse transform:
 0,0,0)(THEN IF bbbb =BGRY (7)
where bbb BGR and bbb CrCbY are correspondently RGB

and YCrCb components of the background pixels in the
current domain; sss CrCbY stands for YCrCb components of
the second most frequent color in the domain that is used for
forward redefinition.

The CrCb components of the domain after (6) become much
smoother that allows significantly improve compression
performance of the successive blocks of an image coding
system. The described algorithm could be used for domains
with color background also. In that case let us define

The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008)

background as the most frequent color in the current domain.
The algorithm is presented below.

B. Forward E-YUV Tranform
In the forward transform at the coder side for every image
domain the following steps are processed:

Step 0: REPEAT for every pixel j in the domain

128081312.0418688.05.0

1285.0331264.0168736.0
114.0587.0299.0

+−−=

++−−=

++=

jjjj

jjjj

jjjj

BGRCr
BGRCb

BGRY

Step 1:
 SELECT MainColorY, SecondColorCr, SecondColorCb
Step 2:
 IF MainColorY is NOT UNIQUE in the domain
 THEN
 MainColorY= MainColorCr= MainColorCb=0
 GOTO Step 5
Step 3:

 IF

−≤
∑

∑ =

=

)()(max 1

1 n

C
CC

n

i
in

i
iii

 THEN
 MainColorY= MainColorCr= MainColorCb=0
 GOTO Step 5
Step 4: REPEAT for every pixel j in the domain
 IF jY = MainColorY
 THEN
 jCb = SecondColorCb
 jCr = SecondColorCr
Step 5:
 GET next domain AND GOTO Step 1

C. Inverse E-YUV Tranform
Step 0:
 Receive MainColorY, MainColorCr, MainColorCb
Step 1:
 IF MainColorY= MainColorCr= MainColorCb=0
 THEN GOTO Step 3
 ELSE GOTO Step 2
Step 2: REPEAT for every pixel j in the domain
 IF jY = MainColorY
 THEN
 jCb = MainColorCb
 jCr = MainColorCr
Step 3: REPEAT for every pixel j in the domain

)128(772.1

)128(34414.0)128(7141.0
)128(402.1

−+=

−−−−=

−+=

jjj

jjjj

jjj

CbYB
CbCrYG

CrYR

D. Description Details
For correct inverse transform the RGB values of the
background should be transmitted to the decoder side. But the
overhead is very small: for 8x8 domain (192 bytes for 8
bit/pixel color depth) the amount of additional information is
3 bytes only (1.6%). Backgrounds of the neighbouring
domains usually have close values and therefore could be
efficiently compressed losslessly. In our experiments the
additional data was compressed by 3-4 times on average
using run length encoding with monotonous code of Gallager-
van Voorhis [4].

It should be noticed that the suggested algorithms with
redefinition of background CrCb components is efficient only
for domains with several prevalent colors: texts, computer
graphics etc. Therefore multicoloured domains of
photorealistic images with textures and gradients should be
compressed using standard YCrCb. To detect domains with
computer graphics for which the proposed Extended
Colorspace transform should be applied the following.
empirical rule is used here (see Step 3 of the Forward
algorithm):

 IF))()((max 1

1 n

C
CC

n

i
in

i
iii

∑
∑ =

=

−> THEN redefine (8)

where n – number of different color sets in the domain,
iC – number of pixels with color i in the domain

One could see in (2) that different colorsets Y1Cr1Cb1 and
Y2Cr2Cb2 may have equal Y components (Y1= Y2) but differ
in other two. Fortunately the probability that two different
colors with the same Y meet in one domain is very small
(<0.0006). So such domains are detected and simply skipped
at the coder side and 3 zeros are put into the stream with
background values. Receiving (000) at the decoder side
means that E-YUV is not applied to the current domain. So
step X is used to ensure that MainColorY is unique in the
domain because Y component is used to detect redefined
pixels at the decoder side (see Step 1 of the inverse transform)

In Fig. 2 (d, e, f) one could see an example of Extended
YCrCb transform applied to computer image with color text
and icons. Y component was not changed but components Cr
and Cb were redefined in each domain separately and become
much smother in comparison to the original ones in the Fig. 2
(a, b, c).

IV. PRACTICAL RESULTS

To estimate the performance of the proposed approach the
image components YCrCb after Extended YCrCb transform
were compressed in lossless mode using the H264/AVC [5]
(Table 1) and JPEG-LS [6] (Table 2) codecs. The summary of
results is shown in Fig. 4. Typical compression pipeline is
shown in Fig. 5.

Test images were divided into several groups: photorealistic
ones, screen shots with small amount of text and icons,
computer graphic images.

For photos like Lena and Peppers E-YUV transform have
shown no gain because the text domains were not found by
the detector (see Step X in Algorithm Description).

The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008)

Additional data is compressed very efficiently because
consists of all zero values.

At the same time E-YCrCb allows increasing compression
ratio for computer graphic images (Calendar,
VisualStudioIDE) up to 2 times!

V. ACKNOWLEDGEMENTS

This research work is supported by special grant of Intel CTG
Research Council. The article is prepared within the scope of
Finnish-Russian University Cooperation Program in
Telecommunications (FRUCT) [7] and the authors would like
to thank all experts and organizers of the FRUCT program for
their help and contribution. The authors would also like to
thank Nokia university collaboration program for providing
publication and travelling grants.

REFERENCES
[1] Krasilnikov N. “Digital image processing”, Moscow, 2001. 319 p.
[2] Dae-Sung Cho, D. Birinov, Hyun Mun Kim, Shi-Hwa Lee and Yang-

Seock Seo, “RGB Video Coding Using Residual Color Transform”, Samsung
Journal of Innovative Technology, 2005.

[3] Ford A., Roberts A. “Colour Space Conversions”. August 11, 1998.
[4] Gallager R., van Voorhis D. “Optimal source codes for geometrically

distributed alphabets”, IEEE Trans. Inform. Theory 21 (2). 1975. P. 228-230.
[5] Wiegand T., Sullivan G. J., Bjøntegaard G, and Luthra A., “Overview

of the H.264/AVC Video Coding Standard”, IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, no. 7, July, 2003. P. 560 – 576.

[6] FCD 14495, Lossless and near-lossless coding of continuous tone still
images (JPEG-LS).

[7] Finnish-Russian University Cooperation Program in
Telecommunications (FRUCT), http://www.fruct.org

0

5

10

15

20

25

30

35

40

45

1.bm
p

Le
na

.bmp

Pep
per

s.b
mp

de
sc

_m
ov

ea.
bm

p

a_
test0

05
.b

mp

a_
tes

t004
.b

mp

a_
tes

t00
7.b

mp

a_
tes

t00
3.b

mp

vis
io_p

lus
0.

bm
p

op
er

a_
plu

s0
.bm

p

a_te
st0

01
.b

mp

6_
tex

t.b
mp

0_
tex

t.b
mp

Visu
a lStud

ioI
DE.b

mp

5_
tex

t.b
mp

Cale
nd

ar
.bmp

Image

C
om

pr
es

si
on

 ra
tio

n

Standard YUV (H264/AVC)

Extended YUV (H264/AVC)

Standard YUV (JPEG-LS)

Extended YUV (JPEG-LS)

Figure 4: Image compression results using standard YUV and E-YUV transforms in H.264/AVC and JPEG-LS codecs.

YUV = [MainColor]

Coder side Decoder side

Background
Selection

+
U, V

Redefinition

RGB
↓

YUV

Get Domain

Computer
Graphics

Detector: ok

Background
Selection

+
U, V

Redefinition

YUV
↓

RGB

H.264
Coder

& Decoder

Set Domain

Figure 5: E-YUV transform for lossless image compression using H.264/AVC

http://www.fruct.org

The 11th International Symposium on Wireless Personal Multimedia Communications (WPMC 2008)

Table 1: E-YUV: Compression results using H264/AVC codec in lossless mode.

Image YUV: compressed
size, bytes

E-YUV:compressed
 size, bytes

Gain,
bytes

Gain,
%

Type
of image

1.bmp 3030602 3030602 0 0.00%
Lena.bmp 395712 395712 0 0.00%
Peppers.bmp 434445 434445 0 0.00%

Photos

desc_movea.bmp 622167 617344 4823 0.78%
a_test005.bmp 1050993 1041751 9242 0.89%
a_test007.bmp 1122772 1110026 12746 1.15%
a_test003.bmp 1288251 1269895 18356 1.45%
visio_plus0.bmp 310398 301517 8881 2.86%
opera_plus0.bmp 366183 353466 12717 3.47%
a_test001.bmp 365889 353031 12858 3.64%
6_text.bmp 574360 538562 35798 6.23%
0_text.bmp 201917 188771 13146 6.51%

Screen Shots +
Photo.
MSWindows
desktop (photo)
with small
amount of text
and icons

VisualStudioIDE.bmp 899765 619081 280684 31.22%
5_text.bmp 986067 528283 457784 46.43%
Calendar.bmp 1087062 518678 568384 52.31%

Screen Shots.
A lot of icons &
color text

Table 2: E-YUV: Compression results using JPEG-LS codec in lossless mode.

Image YUV: compressed
size, bytes

E-YUV:compressed
 size, bytes

Gain,
bytes

Gain,
%

Type
of image

1.bmp 2909749 2909749 0 0.00%
lena.bmp 375456 375456 0 0.00%
peppers.bmp 411528 411528 0 0.00%

Photos

desc_movea.bmp 501858 493248 8610 1.72%
a_test005.bmp 796403 787184 9219 1.16%
a_test007.bmp 1183964 1103286 80678 6.81%
a_test003.bmp 1176360 1149495 26865 2.28%
visio_plus0.bmp 248261 244845 3416 1.38%
opera_plus0.bmp 288959 287754 1205 0.42%
a_test001.bmp 295837 287983 7854 2.65%
6_text.bmp 180070 146962 33108 18.39%
0_text.bmp 197270 183318 13952 7.60%

Screen Shots
+Photo.
MSWindows
desktop (photo)
with small
amount of text
and icons

VisualStudioIDE.bmp 405785 285006 120779 29.76%
5_text,bmp 545527 302538 242989 44,54%
Calendar.bmp 608070 318678 289392 47,62%

Screen Shots.
A lot of icons &
color text

