

1-4244-0216-6/06/$20.00 ©2006 IEEE

Binary Arithmetic Coding System
with Adaptive Probability Estimation by

“Virtual Sliding Window”
Eugeniy Belyaev, Marat Gilmutdinov and Andrey Turlikov

Abstract — "Virtual Sliding Window" algorithm

presented in this paper is an adaptive mechanism for

estimating the probability of ones at the output of binary

non-stationary sources. It is based on "Imaginary sliding

window" idea proposed by B.Ryabko. The proposed

algorithm was used as an alternative adaptation mechanism

in Context-Based Adaptive Binary Arithmetic Coding

(CABAC) - an entropy coding scheme of H.264/AVC

standard for video compression. The "virtual sliding

window" algorithm was integrated into an open-source

codec supporting H.264/AVC standard. Comparison of the

"virtual sliding window" algorithm with the original

adaptation mechanism from CABAC is presented. Test

results for standard video sequences are included. These

results indicate that using the proposed algorithm improves

rate-distortion performance compared to the original

CABAC adaptation mechanism. Besides improvement in

rate-distortion performances the "Virtual Sliding Window"

algorithm has one more advantage. CABAC uses a finite

state machine (FSM) for estimation of the probability of

ones at the output of a binary source. Transitions for FSM

are defined by a table stored in memory. The disadvantage

of CABAC consists in frequent reference to this table (one

time for every binary symbol encoding), which is critical for

DSP implementation. The "Virtual Sliding Window"

algorithm allows to avoid using the table of transitions
1
.

Index Terms — CABAC, entropy coding, context modeling,

binary arithmetic coding, imaginary sliding window, universal

coding, universal prediction, H.264, MPEG-4 AVC.

I. INTRODUCTION

Adaptive arithmetic encoding is included in most modern

standards of video compression. Compression rate of such

encoding technique largely depends on precision of encoded

symbols probabilities estimation. In the set of algorithms of

adaptive probability estimation a class of methods can be

distinguished that are used for encoding of stationary

sources on limited time intervals. One of the first algorithms

of this class is the “sliding window” algorithm. But this

1 The authors are with the department of information systems, State

University of Aerospace Instrumentation, Saint-Petersburg, Russia (e-mail:
e_beliaev@mail.ru; gmrt@list.ru; turlikov@mail.ru).

algorithm is memory-demanding and not suitable for

practical usage in video compression applications. A

number of new methods based on “sliding window” idea

approximating its work were suggested. Rivest and

Leighton [2] and independently Ryabko [5] proposed an

algorithm of probability estimation using a randomized

finite-state machine. This algorithm is known as “Imaginary

Sliding Window” (ISW). Feder and Meron in paper [4] gave

an extensive review of estimation techniques using finite

memory and suggested a method which consists of

randomized finite-state machine replacement by time

invariant deterministic finite-state machine (TIDFS). In this

paper we suggest a way to implement derandomized

method, which we shall call “virtual sliding window”. The

proposed method is easy in implementation and does not

require extra memory storage. This paper gives results of

practical application of a “virtual sliding window” in

Context-Based Adaptive Binary Arithmetic Coding, which

is used in H.264/AVC video compression standard. We also

show that the proposed algorithm is efficient in comparison

with a TIFDS machine-based technique applied in the

standard.

II. DATA COMPRESSION USING “SLIDING WINDOW”

Algorithms of adaptive data encoding based on “sliding
window” are widely known. The probability of source
symbol is estimated by analysis of special buffer contents. It
keeps W previous encoded symbols, where W is length of
buffer. After encoding of each symbol the buffer contents is
shifted by one position, new symbol is written to the free
cell and the earliest symbol in buffer is erased. This buffer is
called “sliding window” after the method of buffer content
manipulation.

For binary sources probability of ones is estimated by
Krichevsky-Trofimov [1] formula

� 0.5

1
t

t

S
p

W

+
=

+
 (1)

where

tS is number of ones in window at time t .

The advantage of using the “sliding window” is
opportunity of precise evaluation of source statistics and fast
adaptation to changing statistics. However, the window has
to be stored in encoder and decoder memory, which is a
serious disadvantage of this algorithm.

There exist algorithms matching “sliding window”
performance. These algorithms make use of the fact that the
window is necessary only for recount of symbols and it
doesn’t have to be stored in memory. (As far as the symbol
erased from window is unknown at every step, the number
of symbols is recounted in accordance with a specific rule).
We shall give an overview of such algorithms described in
[2], [4] and [5].

First we shall consider “imaginary sliding window”
technique (ISW) proposed for a binary source in paper [2]
and for non-binary source in Ryabko’s paper [5]. The ISW
technique does not require window content storage and
estimates count of symbols from source alphabet stored in
window.

We shall describe the ISW method for a binary source.
Define

tx – source output symbol at time instant t ,

{ }1,0∈tx ;
ty – symbol deleted from the window at time

instant t , { }1,0∈ty ;

Suppose at every time instant a symbol in a random
position is erased from the window instead of the last one.
Then the number of ones in the window is recalculated by
the following recurrent randomized procedure.
Step 1. Delete a random symbol from the window

ttt ySS −=+1

where
ty is a random value generated with probabilities

{ }

{ }

Pr 1

Pr 0 1 .

t
t

t
t

S
y

W

S
y

W


= =


 = = −


Step 2. Add a new symbol from the source

1 1 .
t t t

S S x
+ +

= +

For implementation of ISW algorithm a random variable
must be generated. This random variable should take the
same values at corresponding steps of encoder and decoder.
However, there is a way to avoid generating a random
variable. At step 1 of the algorithm let us replace random

value ty with its probabilistic average. Then the rule for

recalculating number of ones after encoding of each symbol

tx can be presented in two steps.

Step 1. Delete an average number of ones from the window

1 .t
t t

S
S S

W
+

= −

Step 2. Add a new symbol from the source

1 1 .
t t t

S S x
+ +

= +

The final rule for recalculating number of ones can be given
as follows

1

1
1 .t

t t t t t

S
S S x S x

W W
+

 
= − + = − + 

 
 (2)

The rule for recalculating (2) was derived in [4] and
belongs to a class of algorithms using time invariant

deterministic finite-state (TIDFS) machine.

III. DESCRIPTION OF “VIRTUAL SLIDING WINDOW”

ALGORITHM

The main drawback of the proposed in [4] algorithm is
using floating-point operations because

tS is not integer.

For transition to an integer algorithm we shall give an
interpretation of ISW algorithm as follows. Suppose a
“sliding window” of W cells is given. On input of next

symbol one cell is chosen at random. The symbol in the
chosen cell is replaced by the newly received symbol.
 The rule of recalculation (2) in integer implementation
can have the following interpretation. Let there be a “sliding
window” of cW cells, where c is the algorithm parameter.

The value of received symbol is put into c randomly chosen

cells and the average number of ones in selected c cells is

removed from the window.
 Now suppose that the number of ones in the window of

cW cells after encoding of next symbol
tx is recalculated

by the rule


















+−

+=
+

W

W
ScW

SS
t

tt

2
1

 , if 1=tx .


















+

−=
+

W

W
S

SS
t

tt

2
1

 , if 0=tx .

(3)

Further we shall call recalculation rule (3) a “virtual
sliding window” (VSW). Probability estimation of ones for
binary source output for VSW algorithm implementation is
defined as

 � t
t

S
p

cW
= , if 1.tx =

 � 1 t
t

S
p

cW
= − , if 0 .

t
x =

(4)

Implementation of VSW algorithm permits to avoid:

- storing the “sliding window” in encoder and decoder
memory;

- random value generation;
- floating-point operations.

If i
W 2= is chosen where i is a positive integer, division

can be replaced by shift operation.
As a criterion for choice of parameter c we shall take the

equality of minimal probability estimation of ones for binary
source output for ISW and VSW algorithms. From (1) it
follows that the minimal estimated probability for ISW
algorithm is

�
min

1
.

2(1)
p

W
=

+
 (5)

From (3) and (4) it follows that minimal estimated
probability for VSW algorithm is

�
min

1
2 .

W

p
cW

−

= (6)

Equating (5) and (6) gives

1
1 2 .

2(1)

W

W cW

−

=
+

W
W

Wc ≈−−=
2

1 (if 1>>W) .

Using formula (4) is possible after W symbols entered

the window. Therefore, in initial time interval Wt <<0 the

probability estimation is calculated by Krichevsky-Trofimov
formula

� 0.5

1
t

t

n
p

t

+
=

+
 (7)

where
tn is the number of ones received in time interval

],0[t ; next, at time moment 1−= Wt initialization of ones

number in VSW algorithm is carried out

� ()1

1 1

0.5

2

W

W W W

n W
S p cW cW Wn

W

−

− −

+
= = = +

where �
1Wp

−
 is the probability estimation obtained by

formula (7) at time 1−= Wt . At time instants

Wt ≥ probability estimation is calculated by formula (4).

IV. USING CABAC IN H.264/AVC STANDARD

In standard H.264/AVC two types of entropy encoding
are used: Context-based Adaptive Binary Arithmetic Coding
(CABAC) and Context-based Adaptive Variable Length
Coding (CAVLC). In paper [3] it is shown that the bit-rate
savings of CABAC can be as high as 20%. But encoding
time for CAVLC is significantly less than that of CABAC.
Therefore, using CABAC in time-critical applications (e.g.
real-time applications) is problematic. As it will be shown
later, “virtual sliding window” (VSW) is one of the ways to
improve CABAC performance. With VSW it is also
possible to improve compression in comparison with the
probabilities estimation method used in current version of
CABAC.
The CABAC algorithm consists of three successively run
steps.
 - Binarization
 - Selection of context model for encoded binary symbol
 - Encoding by an arithmetic coder and adaptation of the
context model used at the previous step.

Binarization is mapping a non-binary symbol from
CABAC input into a binary sequence called a binary string.
In H.264/AVC several binarization types are used, but the
primary method after which binary string is encoded in
regular mode is unary binarization. Unary binarization maps
a non-negative value x to a sequence of x zeros and a
terminating one.

For each symbol from binary string generated at previous
step a context model is selected from a fixed set in
accordance with a specific rule. Each context model
contains a description on a binary (Bernoulli) source (in
fact, a current estimation of distribution of this source). The
selection points to source that the output currently encoded
symbol belongs to.

Encoding of a binary symbol can be carried out in one of
two modes:

-Regular, when a symbol is encoded with probability
estimations specified by the selected context model. After
encoding, probability estimations of this context model are
updated.

-Bypass, when a model with fixed probability estimations
of 0.5 for both zeros and ones is used. In this mode no
probability estimation are updated.

The algorithm of estimates adaptation for regular mode is
based on TIDFS machine. CABAC has 128 probability
states and transition table with two parts: one - for symbol
with the lowest probability (Least Probable Symbol – LPS)
and second for symbol with the most probability (Most
Probable Symbol – MPS) at the current moment. As far as a
FSM of the same type is used for each context model, the
transition table of this FSM is stored in memory only once.
However, the current state of this machine is to be stored for
each context model. When probability estimation for the
present context model is modified, transition table lookup is
required in order to define the next state and exchange LPS
and MPS definitions if necessary.

Let us mark some features of adaptation procedure
implementation used in CABAC and entropy encoding in
H.264/AVC on the whole.
- Modification of FSM states and consequently of
probability estimations for all context models is carried out
in accordance with the same rules. In other words, the
present algorithm does not take account of specific features
of different context models.
- Each context model has its own initial state of the FSM for
initialization at the start of encoding. Initial values have to
be stored either in file or in memory.
- At the start of each frame processing, initialization of FSM
states is performed for all context models regardless of the
frame type.

V. FEATURES OF VSW ALGORITHM IMPLEMENTATION IN

H.264/AVC STANDARD

In common case the binary sources corresponding to

these models are non-stationary. Statistical properties of

these sources can vary a great deal. This fact makes the

problem of choosing window length for each source very

significant.

For stationary memoryless sources window length

expansion increases probability estimation precision and

improves compression rate. For arbitrary source window

length expansion may reduce estimation precision.

Optimal window length selection is a complex problem

because statistical properties of sources corresponding to

context models are unknown a priori. The simple heuristic

algorithm of window length selection is proposed. Let us

define a { }lwwwL ,...,, 21= of window length. The test

sequence is encoded and then we select window length for

each context model from the set L. Let us consider context

model with number i . During the test sequence encoding

we calculate probability estimations � �
1(,),..., (,)j j lp i w p i w

for symbol with number j corresponding to this model.

After test sequence encoding, bitstream length estimation is

calculated by equation

() � (), log , .k j k

j

R i w p i w= −∑

Window length)(iW for context model with number i is

assigned by equation

() ()min , .
k

k
W i R i w=

Sometimes it makes sense to use the same window length

W for all context models. Then window length selection

depends only on the quantization step value. In this case W

is chosen subject to minimal total bitstream length

estimation calculated among all context models

� ()min log , .j k
k

i j

W p i w
 

= − 
 
∑∑

VI. PRACTICAL RESULTS OF APPLYING VSW ALGORITHM

IN H.264/AVC STANDARD

To obtain practical results the suggested algorithm VSW

was embedded into JVT codec, version JM. 10.2 (FRExt),

supporting H.264/AVC standard. As results we show bit-

rate savings provided by VSW usage relative to the original

version of the codec. PSNR value is the same in both cases.

Modification of the initial algorithms affects two aspects.

First, we suggest using two variants of VSW algorithm. The

first variant uses the same window length for all context

models, while the second chooses a specific window length

for each context model. The results are given in

tables 1 and 2. Second, we suggest avoiding initialization of

context model states on each frame for type P (predicted).

Initialization of P-frames is carried out only after encoding

of key frames (type I - intra). The latter way of initialization

we shall call non-regular. The results of such modification

are given in tables 3 and 4. Table 3 shows results obtained

using same window lengths for all context models; table 4

shows results for different window lengths. “Foreman”

video sequence was used as a test sequence for window

length selection. Values of parameter W in both cases were

selected from set { }9876543 2,2,2,2,2,2,2=L .

Comparing the proposed “virtual sliding window”

algorithm with the original CABAC adaptation mechanism

for JVT/H.264, average bit-rate savings about 0.1-5.5% can

be obtained.

TABLE I

BIT-RATE SAVINGS PROVIDING BY USAGE OF VSW METHOD

WITH FIXED WINDOW LENGTH

QP 10 20 30 40 50

foreman 0.58 0.43 0.16 0.10 0.60

mobile 0.32 0.35 0.30 0.06 0.35

tempete 0.16 0.34 0.33 -0.08 0.78

TABLE II

BIT-RATE SAVINGS PROVIDING BY USAGE OF VSW METHOD

WITH VARIABLE WINDOW LENGTH

QP 10 20 30 40 50

foreman 0.76 0.73 0.61 0.79 2.35

mobile 0.12 0.28 0.19 0.30 0.64

tempete 0.16 0.40 0.30 0.35 2.06

TABLE III

BIT-RATE SAVINGS PROVIDING BY USAGE OF VSW METHOD WITH

FIXED WINDOW LENGTH (NON-REGULAR INITIALIZATION)

QP 10 20 30 40 50

foreman 0.64 0.48 0.50 0.89 4.20

mobile 0.35 0.36 0.47 0.68 2.77

tempete 0.23 0.34 0.36 0.36 4.12

TABLE IV

BIT-RATE SAVINGS PROVIDING BY USAGE OF VSW METHOD

WITH VARIABLE WINDOW LENGTH (NON-REGULAR INITIALIZATION)

QP 10 20 30 40 50

foreman 0.81 0.82 1.03 1.74 6.00

mobile 0.19 0.34 0.54 1.17 3.61

tempete 0.20 0.41 0.46 0.85 5.57

VII. CONCLUSION

The proposed “virtual sliding window” method for

probability of ones estimation is a development of ISW

method. Like ISW, VSW method approximates work of

“sliding window” algorithm but does not require to store the

window in memory. An additional advantage of VSW is

avoiding random value generation for state modifications.

Methods similar to VSW were proposed in other works,

e.g. [4], but distinguishing feature of VSW is integer

implementation.

As compared to probability estimation technique used in

CABAC, the suggested method allows to obtain better

compression rate. The compression gain is reached by

assigning to different context models specific window

lengths selected by statistical properties of corresponding

source. Implementation of VSW method is not more

complex than CABAC implementation. Moreover, VSW

implementation on DSP has additional advantage. It does

not need to store transition table for FSM used for

modification of probability estimation.

One of the ways for improving VSW method can be

usage of adaptive window length during sequence encoding.

REFERENCES

[1] E. Krichevski and V. E. Trofimov, “The performance of universal
encoding,” IEEE Trans. Inform. Theory, vol. IT-27, pp. 199–207,
Mar.1981.

[2] T. Leighton and R. L. Rivest, “Estimating a probability using finite
memory” IEEE Trans. Inform. Theory, vol. IT-32, pp. 733–742,
Nov.1986.

[3] D.Marpe, H.Schwarz and T.Wiegand, “Context-based Adaptive
Binary Arithmetic Coding in the H.264/AVC Video Compression
Standard” IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 13, No. 7, pp. 620-636, July 2003.
[4] E. Meron and M. Feder, “Finite-Memory Universal Prediction of

Individual Sequences” IEEE Trans. Inform. Theory, vol. 50-7, pp.
1506–1523, July 2004.

[5] B.Y. Ryabko, “Imaginary sliding window as a tool for data
compression,” Probl. Inform. Transm., pp. 156–163, Jan. 1996.

Eugeniy Belyaev graduated from St.-Petersburg State
University of Aerospace Instrumentation (SUAI) in
2005. Since 2005 he has been PhD student of SUAI.
His research interests include video compression
algorithms and digital signal processing.

Marat Gilmutdinov is an assistant professor of
information systems department of St.-Petersburg State
University of Aerospace Instrumentation (SUAI). He
received his PhD degree at SUAI in 2002. His research
interest include still image and video compression
algorithms, methods of real-time data transmission
over IP networks and algorithms of random multiple

access.

 Andrey Turlikov is an associate professor of
information systems department of St.-Petersburg State
University of Aerospace Instrumentation (SUAI). He
graduated from Leningrad State Institute of Aerospace
Instrumentation (now SUAI) in 1980 and received his
PhD degree in 1986. Since 1987 he has been involved
in teaching work. Dr. Turlikov is the author of

approximately 50 publications. His research interests include multiple
access systems, real-time data transmission protocols and video
compression algorithms.

