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Abstract — "Virtual Sliding Window" algorithm 

presented in this paper is an adaptive mechanism for 

estimating the probability of ones at the output of binary 

non-stationary sources. It is based on "Imaginary sliding 

window" idea proposed by B.Ryabko. The proposed 

algorithm was used as an alternative adaptation mechanism 

in Context-Based Adaptive Binary Arithmetic Coding 

(CABAC) - an entropy coding scheme of H.264/AVC 

standard for video compression. The "virtual sliding 

window" algorithm was integrated into an open-source 

codec supporting H.264/AVC standard. Comparison of the 

"virtual sliding window" algorithm with the original 

adaptation mechanism from CABAC is presented. Test 

results for standard video sequences are included. These 

results indicate that using the proposed algorithm improves 

rate-distortion performance compared to the original 

CABAC adaptation mechanism. Besides improvement in 

rate-distortion performances the "Virtual Sliding Window" 

algorithm has one more advantage. CABAC uses a finite 

state machine (FSM) for estimation of the probability of 

ones at the output of a binary source. Transitions for FSM 

are defined by a table stored in memory. The disadvantage 

of CABAC consists in frequent reference to this table (one 

time for every binary symbol encoding), which is critical for 

DSP implementation. The "Virtual Sliding Window" 

algorithm allows to avoid using the table of transitions 
1
. 

 
Index Terms — CABAC, entropy coding, context modeling, 

binary arithmetic coding, imaginary sliding window, universal 

coding, universal prediction, H.264, MPEG-4 AVC.  

  

I. INTRODUCTION 

Adaptive arithmetic encoding is included in most modern 

standards of video compression. Compression rate of such 

encoding technique largely depends on precision of encoded 

symbols probabilities estimation. In the set of algorithms of 

adaptive probability estimation a class of methods can be 

distinguished that are used for encoding of stationary 

sources on limited time intervals. One of the first algorithms 

of this class is the “sliding window” algorithm. But this 
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algorithm is memory-demanding and not suitable for 

practical usage in video compression applications. A 

number of new methods based on “sliding window” idea 

approximating its work were suggested.  Rivest and 

Leighton [2] and independently Ryabko [5] proposed an 

algorithm of probability estimation using a randomized 

finite-state machine. This algorithm is known as “Imaginary 

Sliding Window” (ISW). Feder and Meron in paper [4] gave 

an extensive review of estimation techniques using finite 

memory and suggested a method which consists of 

randomized finite-state machine replacement by time 

invariant deterministic finite-state machine (TIDFS). In this 

paper we suggest a way to implement derandomized 

method, which we shall call “virtual sliding window”. The 

proposed method is easy in implementation and does not 

require extra memory storage. This paper gives results of 

practical application of a “virtual sliding window” in 

Context-Based Adaptive Binary Arithmetic Coding, which 

is used in H.264/AVC video compression standard. We also 

show that the proposed algorithm is efficient in comparison 

with a TIFDS machine-based technique applied in the 

standard. 

II. DATA COMPRESSION USING “SLIDING WINDOW” 

Algorithms of adaptive data encoding based on “sliding 
window” are widely known. The probability of source 
symbol is estimated by analysis of special buffer contents. It 
keeps W previous encoded symbols, where W is length of 
buffer. After encoding of each symbol the buffer contents is 
shifted by one position, new symbol is written to the free 
cell and the earliest symbol in buffer is erased. This buffer is 
called “sliding window” after the method of buffer content 
manipulation.  

For binary sources probability of ones is estimated by 
Krichevsky-Trofimov [1] formula  
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where 

tS  is number of ones in window at time  t . 

The advantage of using the “sliding window” is 
opportunity of precise evaluation of source statistics and fast 
adaptation to changing statistics. However, the window has 
to be stored in encoder and decoder memory, which is a 
serious disadvantage of this algorithm. 



 

 

There exist algorithms matching “sliding window” 
performance. These algorithms make use of the fact that the 
window is necessary only for recount of symbols and it 
doesn’t have to be stored in memory. (As far as the symbol 
erased from window is unknown at every step, the number 
of symbols is recounted in accordance with a specific rule). 
We shall give an overview of such algorithms described in 
[2], [4] and [5]. 

First we shall consider “imaginary sliding window” 
technique (ISW) proposed for a binary source in paper [2] 
and for non-binary source in Ryabko’s paper [5]. The ISW 
technique does not require window content storage and 
estimates count of symbols from source alphabet stored in 
window.  

We shall describe the ISW method for a binary source. 
Define 

tx – source output symbol at time instant t , 

{ }1,0∈tx ;
ty – symbol deleted from the window at time 

instant t , { }1,0∈ty ; 

Suppose at every time instant a symbol in a random 
position is erased from the window instead of the last one. 
Then the number of ones in the window is recalculated by 
the following recurrent randomized procedure. 
Step 1. Delete a random symbol from the window 
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where 
ty  is a random value generated with probabilities 
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Step 2. Add a new symbol from the source 
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For implementation of ISW algorithm a random variable 
must be generated. This random variable should take the 
same values at corresponding steps of encoder and decoder. 
However, there is a way to avoid generating a random 
variable. At step 1 of the algorithm let us replace random 

value  ty  with its probabilistic average. Then the rule for 

recalculating number of ones after encoding of each symbol 

tx  can be presented in two steps. 

Step 1. Delete an average number of ones from the window 

1 .t
t t

S
S S

W
+

= −  

Step 2. Add a new symbol from the source 
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The final rule for recalculating number of ones can be given 
as follows 
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The rule for recalculating (2) was derived in [4] and 
belongs to a class of algorithms using time invariant 

deterministic finite-state (TIDFS) machine. 

III. DESCRIPTION OF “VIRTUAL SLIDING WINDOW” 

ALGORITHM  

The main drawback of the proposed in [4] algorithm is 
using floating-point operations because 

tS  is not integer. 

For transition to an integer algorithm we shall give an 
interpretation of ISW algorithm as follows. Suppose a 
“sliding window” of W  cells is given. On input of next 

symbol one cell is chosen at random. The symbol in the 
chosen cell is replaced by the newly received symbol. 
 The rule of recalculation (2) in integer implementation 
can have the following interpretation. Let there be a “sliding 
window” of cW  cells, where c  is the algorithm parameter. 

The value of received symbol is put into c  randomly chosen 

cells and the average number of ones in selected c  cells is 

removed from the window.  
 Now suppose that the number of ones in the window of 

cW  cells after encoding of next symbol 
tx  is recalculated 

by the rule  
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(3) 

Further we shall call recalculation rule (3) a “virtual 
sliding window” (VSW). Probability estimation of ones for 
binary source output for VSW algorithm implementation is 
defined as 
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Implementation of VSW algorithm permits to avoid: 

- storing the “sliding window” in encoder and decoder 
memory; 

- random value generation; 
- floating-point operations.  

If i
W 2=  is chosen where i  is a positive integer, division 

can be replaced by shift operation. 
As a criterion for choice of parameter c  we shall take the 

equality of minimal probability estimation of ones for binary 
source output for ISW and VSW algorithms. From (1) it 
follows that the minimal estimated probability for ISW 
algorithm is 
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From (3) and (4) it follows that minimal estimated 
probability for VSW algorithm is 
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Equating (5) and (6) gives 
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Using formula (4) is possible after W  symbols entered 

the window. Therefore, in initial time interval Wt <<0 the 

probability estimation is calculated by Krichevsky-Trofimov 
formula 
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where  
tn   is the number of ones received in time interval 

],0[ t ; next, at time moment 1−= Wt  initialization of ones 

number in VSW algorithm is carried out 
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where �
1Wp

−
 is the probability estimation obtained by 

formula (7) at time 1−= Wt . At time instants 

Wt ≥ probability estimation is calculated by formula (4). 

IV. USING CABAC IN H.264/AVC STANDARD  

In standard H.264/AVC two types of entropy encoding 
are used: Context-based Adaptive Binary Arithmetic Coding 
(CABAC) and Context-based Adaptive Variable Length 
Coding (CAVLC). In paper [3] it is shown that the bit-rate 
savings of CABAC can be as high as 20%. But encoding 
time for CAVLC is significantly less than that of CABAC. 
Therefore, using CABAC in time-critical applications (e.g. 
real-time applications) is problematic. As it will be shown 
later, “virtual sliding window” (VSW) is one of the ways to 
improve CABAC performance. With VSW it is also 
possible to improve compression in comparison with the 
probabilities estimation method used in current version of 
CABAC.  
The CABAC algorithm consists of three successively run 
steps.  
 - Binarization 
 - Selection of context model for encoded binary symbol 
 - Encoding by an arithmetic coder and adaptation of the 
context model used at the previous step. 

Binarization is mapping a non-binary symbol from 
CABAC input into a binary sequence called a binary string. 
In H.264/AVC several binarization types are used, but the 
primary method after which binary string is encoded in 
regular mode is unary binarization. Unary binarization maps 
a non-negative value x to a sequence of x zeros and a 
terminating one.  

For each symbol from binary string generated at previous 
step a context model is selected from a fixed set in 
accordance with a specific rule. Each context model 
contains a description on a binary (Bernoulli) source (in 
fact, a current estimation of distribution of this source). The 
selection points to source that the output currently encoded 
symbol belongs to. 

Encoding of a binary symbol can be carried out in one of 
two modes: 

-Regular, when a symbol is encoded with probability 
estimations specified by the selected context model. After 
encoding, probability estimations of this context model are 
updated. 

-Bypass, when a model with fixed probability estimations 
of 0.5 for both zeros and ones is used. In this mode no 
probability estimation are updated. 

The algorithm of estimates adaptation for regular mode is 
based on TIDFS machine. CABAC has 128 probability 
states and transition table with two parts: one - for symbol 
with the lowest probability (Least Probable Symbol – LPS) 
and second for symbol with the most probability (Most 
Probable Symbol – MPS) at the current moment. As far as a 
FSM of the same type is used for each context model, the 
transition table of this FSM is stored in memory only once. 
However, the current state of this machine is to be stored for 
each context model. When probability estimation for the 
present context model is modified, transition table lookup is 
required in order to define the next state and exchange LPS 
and MPS definitions if necessary. 

Let us mark some features of adaptation procedure 
implementation used in CABAC and entropy encoding in 
H.264/AVC on the whole. 
- Modification of FSM states and consequently of 
probability estimations for all context models is carried out 
in accordance with the same rules. In other words, the 
present algorithm does not take account of specific features 
of different context models.  
- Each context model has its own initial state of the FSM for 
initialization at the start of encoding. Initial values have to 
be stored either in file or in memory. 
- At the start of each frame processing, initialization of FSM 
states is performed for all context models regardless of the 
frame type. 

V. FEATURES OF VSW ALGORITHM IMPLEMENTATION IN 

H.264/AVC STANDARD 

In common case the binary sources corresponding to 

these models are non-stationary. Statistical properties of 

these sources can vary a great deal. This fact makes the 

problem of choosing window length for each source very 

significant. 

For stationary memoryless sources window length 

expansion increases probability estimation precision and 

improves compression rate. For arbitrary source window 

length expansion may reduce estimation precision. 

 



 

 

Optimal window length selection is a complex problem 

because statistical properties of sources corresponding to 

context models are unknown a priori. The simple heuristic 

algorithm of window length selection is proposed. Let us 

define a { }lwwwL ,...,, 21=  of window length. The test 

sequence is encoded and then we select window length for 

each context model from the set L. Let us consider context 

model with number i . During the test sequence encoding 

we calculate probability estimations � �
1( , ),..., ( , )j j lp i w p i w  

for symbol with number j  corresponding to this model. 

After test sequence encoding, bitstream length estimation is 

calculated by equation  
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Window length )(iW  for context model with number i  is 

assigned by equation 
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Sometimes it makes sense to use the same window length 

W  for all context models. Then window length selection 

depends only on the quantization step value. In this case W  

is chosen subject to minimal total bitstream length 

estimation calculated among all context models 
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VI. PRACTICAL RESULTS OF APPLYING VSW ALGORITHM 

IN H.264/AVC STANDARD 

To obtain practical results the suggested algorithm VSW 

was embedded into JVT codec, version JM. 10.2 (FRExt), 

supporting H.264/AVC standard. As results we show bit-

rate savings provided by VSW usage relative to the original 

version of the codec. PSNR value is the same in both cases. 

Modification of the initial algorithms affects two aspects. 

First, we suggest using two variants of VSW algorithm. The 

first variant uses the same window length for all context 

models, while the second chooses a specific window length 

for each context model. The results are given in 

tables 1 and 2. Second, we suggest avoiding initialization of 

context model states on each frame for type P (predicted). 

Initialization of P-frames is carried out only after encoding 

of key frames (type I - intra). The latter way of initialization 

we shall call non-regular. The results of such modification 

are given in tables 3 and 4. Table 3 shows results obtained 

using same window lengths for all context models; table 4 

shows results for different window lengths. “Foreman” 

video sequence was used as a test sequence for window 

length selection. Values of parameter W in both cases were 

selected from set { }9876543 2,2,2,2,2,2,2=L . 

Comparing the proposed “virtual sliding window” 

algorithm with the original CABAC adaptation mechanism 

for JVT/H.264, average bit-rate savings about 0.1-5.5% can 

be obtained. 

 
TABLE I 

BIT-RATE SAVINGS PROVIDING BY USAGE OF VSW METHOD  

WITH FIXED WINDOW LENGTH 

QP 10 20 30 40 50 

foreman 0.58 0.43 0.16 0.10 0.60 

mobile 0.32 0.35 0.30 0.06 0.35 

tempete 0.16 0.34 0.33 -0.08 0.78 

 
TABLE II 

BIT-RATE SAVINGS PROVIDING BY USAGE OF VSW METHOD  

WITH VARIABLE WINDOW LENGTH 

QP 10 20 30 40 50 

foreman 0.76 0.73 0.61 0.79 2.35 

mobile 0.12 0.28 0.19 0.30 0.64 

tempete 0.16 0.40 0.30 0.35 2.06 
 

TABLE III 

BIT-RATE SAVINGS PROVIDING BY USAGE OF VSW METHOD WITH  

FIXED WINDOW LENGTH (NON-REGULAR INITIALIZATION) 

QP 10 20 30 40 50 

foreman 0.64 0.48 0.50 0.89 4.20 

mobile 0.35 0.36 0.47 0.68 2.77 

tempete 0.23 0.34 0.36 0.36 4.12 

 
TABLE IV 

BIT-RATE SAVINGS PROVIDING BY USAGE OF VSW METHOD  

WITH VARIABLE WINDOW LENGTH (NON-REGULAR INITIALIZATION) 

QP 10 20 30 40 50 

foreman 0.81 0.82 1.03 1.74 6.00 

mobile 0.19 0.34 0.54 1.17 3.61 

tempete 0.20 0.41 0.46 0.85 5.57 

VII. CONCLUSION 

The proposed “virtual sliding window” method for 

probability of ones estimation is a development of ISW 

method. Like ISW, VSW method approximates work of 

“sliding window” algorithm but does not require to store the 

window in memory. An additional advantage of VSW is 

avoiding random value generation for state modifications.  

Methods similar to VSW were proposed in other works, 

e.g. [4], but distinguishing feature of VSW is integer 

implementation. 

As compared to probability estimation technique used in 

CABAC, the suggested method allows to obtain better 

compression rate. The compression gain is reached by 

assigning to different context models specific window 

lengths selected by statistical properties of corresponding 

source. Implementation of VSW method is not more 

complex than CABAC implementation. Moreover, VSW 

implementation on DSP has additional advantage. It does 

not need to store transition table for FSM used for 

modification of probability estimation.  



 

 

One of the ways for improving VSW method can be 

usage of adaptive window length during sequence encoding.  
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